
Valentin Valtchev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2018202/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Syntheses, Crystal Structures and NBO Calculation of Two New Zn(II)/Co(II) Coordination Polymers. Journal of Cluster Science, 2022, 33, 1083-1091.	3.3	2
2	Chromic acid dealumination of zeolites. Microporous and Mesoporous Materials, 2022, 329, 111513.	4.4	8
3	Silicalite-1 formation in acidic medium: Synthesis conditions and physicochemical properties. Microporous and Mesoporous Materials, 2022, 329, 111537.	4.4	14
4	Acidic property of YNU-5 zeolite influenced by its unique micropore system. Microporous and Mesoporous Materials, 2022, 330, 111592.	4.4	3
5	Defect Sites in Zeolites: Origin and Healing. Advanced Science, 2022, 9, e2104414.	11.2	23
6	Gating Effects for Ion Transport in Threeâ€Dimensional Functionalized Covalent Organic Frameworks. Angewandte Chemie, 2022, 134, .	2.0	7
7	Ab initio mechanistic insights into the stability, diffusion and storage capacity of sI clathrate hydrate containing hydrogen. International Journal of Hydrogen Energy, 2022, 47, 8419-8433.	7.1	10
8	Gating Effects for Ion Transport in Threeâ€Dimensional Functionalized Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
9	Threeâ€Dimensional Triptyceneâ€Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angewandte Chemie - International Edition, 2022, 61, .	13.8	61
10	Hydrothermal crystallization of clathrasils in acidic medium: Energetic aspects. Microporous and Mesoporous Materials, 2022, 333, 111728.	4.4	10
11	Towards a comprehensive understanding of mesoporosity in zeolite Y at the single particle level. Inorganic Chemistry Frontiers, 2022, 9, 2365-2373.	6.0	7
12	Dissolution Behavior and Varied Mesoporosity of Zeolites by NH ₄ F Etching. Chemistry - A European Journal, 2022, 28, e202104339.	3.3	9
13	Design and Synthesis of a Zeolitic Organic Framework**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
14	Size-Dependent Photocatalytic Activity of Silver Nanoparticles Embedded in ZX-Bi Zeolite Supports. ACS Applied Nano Materials, 2022, 5, 3866-3877.	5.0	6
15	Revealing Zeolites Active Sites Role as Kinetic Hydrate Promoters: Combined Computational and Experimental Study. ACS Sustainable Chemistry and Engineering, 2022, 10, 8002-8010.	6.7	7
16	Acidic medium synthesis of zeolites – an avenue to control the structure-directing power of organic templates. Dalton Transactions, 2022, 51, 11499-11506.	3.3	8
17	Zeolitic ice: A route toward net zero emissions. Renewable and Sustainable Energy Reviews, 2022, 168, 112768.	16.4	8
18	Comparative Study of Zeolite L Etching with Ammonium Fluoride and Ammonium Bifluoride Solutions. Advanced Materials Interfaces, 2021, 8, 2000348.	3.7	9

#	Article	IF	CITATIONS
19	Cu- and Fe-speciation in a composite zeolite catalyst for selective catalytic reduction of NO _x : insights from <i>operando</i> XAS. Catalysis Science and Technology, 2021, 11, 846-860.	4.1	8
20	A highly selective FER-based catalyst to produce n-butenes from isobutanol. Applied Catalysis B: Environmental, 2021, 284, 119699.	20.2	11
21	Silver quasi-nanoparticles: bridging the gap between molecule-like clusters and plasmonic nanoparticles. Materials Advances, 2021, 2, 5453-5464.	5.4	1
22	Synthesis and application of (nano) zeolites. , 2021, , .		2
23	Crystallization pathway from a highly viscous colloidal suspension to ultra-small FAU zeolite nanocrystals. Journal of Materials Chemistry A, 2021, 9, 17492-17501.	10.3	15
24	Hierarchical SAPOâ€34 Preparation Based on the Crystal Metastability in Mother Liquor Solution. Advanced Materials Interfaces, 2021, 8, 2002029.	3.7	7
25	Platelike MFI Crystals with Controlled Crystal Faces Aspect Ratio. Journal of the American Chemical Society, 2021, 143, 1993-2004.	13.7	93
26	Preparation of hierarchical SSZ-13 by NH4F etching. Microporous and Mesoporous Materials, 2021, 314, 110863.	4.4	10
27	3D Thioetherâ€Based Covalent Organic Frameworks for Selective and Efficient Mercury Removal. Small, 2021, 17, e2006112.	10.0	34
28	Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology. Journal of the American Chemical Society, 2021, 143, 2654-2659.	13.7	94
29	Time-resolved dissolution elucidates the mechanism of zeolite MFI crystallization. Science Advances, 2021, 7, .	10.3	30
30	Understanding the Fundamentals of Microporosity Upgrading in Zeolites: Increasing Diffusion and Catalytic Performances. Advanced Science, 2021, 8, e2100001.	11.2	23
31	Embryonic zeolites for highly efficient synthesis of dimethyl ether from syngas. Microporous and Mesoporous Materials, 2021, 322, 111138.	4.4	9
32	Atomic-Insight into Zeolite Catalyst Forming—an Advanced NMR Study. Journal of Physical Chemistry C, 2021, 125, 20028-20034.	3.1	4
33	Threeâ€Dimensional Radical Covalent Organic Frameworks as Highly Efficient and Stable Catalysts for Selective Oxidation of Alcohols. Angewandte Chemie, 2021, 133, 22404-22409.	2.0	12
34	Threeâ€Dimensional Radical Covalent Organic Frameworks as Highly Efficient and Stable Catalysts for Selective Oxidation of Alcohols. Angewandte Chemie - International Edition, 2021, 60, 22230-22235.	13.8	37
35	3D Hydrazoneâ€Functionalized Covalent Organic Frameworks as pHâ€Triggered Rotary Switches. Small, 2021, 17, e2102630.	10.0	32
36	Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture. Chemical Science, 2021, 12, 8452-8457.	7.4	87

#	Article	IF	CITATIONS
37	Synthesis and catalytic application of nanorod-like FER-type zeolites. Journal of Materials Chemistry A, 2021, 9, 24922-24931.	10.3	15
38	Unlocking the potential of hidden sites in FAUJASITE: new insights in a proton transfer mechanism. Angewandte Chemie - International Edition, 2021, 60, 26702-26709.	13.8	17
39	Biomineralization at the Molecular Level: Amino Acid-Assisted Crystallization of Zeotype AlPO ₄ ·1.5H ₂ O–H3. Crystal Growth and Design, 2021, 21, 7298-7305.	3.0	4
40	Assessment of metal sintering in the copper-zeolite hybrid catalyst for direct dimethyl ether synthesis using synchrotron-based X-ray absorption and diffraction. Catalysis Today, 2020, 343, 199-205.	4.4	4
41	Syntheses, Crystal Structures and Theoretical Calculations of Two Nickel, Zinc Coordination Polymers with 4-Nitrophthalic Acid and Bis(imidazol) Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 477-485.	3.7	1
42	Syntheses, Crystal Structures and NBO Calculation of Two New Zinc(II) Coordination Polymers. Journal of Chemical Crystallography, 2020, 50, 155-163.	1.1	4
43	Organic template-free synthesis of an open framework silicoaluminophosphate (SAPO) with high thermal stability and high ionic conductivity. Inorganic Chemistry Frontiers, 2020, 7, 542-553.	6.0	9
44	Magnetic Fe@Y Composites as Efficient Recoverable Catalysts for the Valorization of the Recalcitrant Marine Sulfated Polysaccharide Ulvan. ACS Sustainable Chemistry and Engineering, 2020, 8, 319-328.	6.7	6
45	Analysis and control of acid sites in zeolites. Applied Catalysis A: General, 2020, 606, 117795.	4.3	81
46	Three-Dimensional Large-Pore Covalent Organic Framework with stp Topology. Journal of the American Chemical Society, 2020, 142, 13334-13338.	13.7	149
47	Novel Strategy for the Synthesis of Ultra‣table Single‣ite Moâ€ZSMâ€5 Zeolite Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 19553-19560.	13.8	61
48	Two-Dimensional COF–Three-Dimensional MOF Dual-Layer Membranes with Unprecedentedly High H ₂ /CO ₂ Selectivity and Ultrahigh Gas Permeabilities. ACS Applied Materials & Interfaces, 2020, 12, 52899-52907.	8.0	59
49	Environmentally benign synthesis of crystalline nanosized molecular sieves. Green Energy and Environment, 2020, 5, 394-404.	8.7	14
50	Busting the efficiency of SAPO-34 catalysts for the methanol-to-olefin conversion by post-synthesis methods. Chinese Journal of Chemical Engineering, 2020, 28, 2022-2027.	3.5	18
51	Threeâ€Dimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie, 2020, 132, 19801-19806.	2.0	13
52	Expanding the Synthesis Field of High‧ilica Zeolites. Angewandte Chemie, 2020, 132, 19744-19749.	2.0	1
53	Expanding the Synthesis Field of High‣ilica Zeolites. Angewandte Chemie - International Edition, 2020, 59, 19576-19581.	13.8	18
54	Probing the BrÃ,nsted Acidity of the External Surface of Faujasiteâ€Type Zeolites. ChemPhysChem, 2020, 21, 1873-1881.	2.1	30

#	Article	IF	CITATIONS
55	A sponge-like small pore zeolite with great accessibility to its micropores. Inorganic Chemistry Frontiers, 2020, 7, 2154-2159.	6.0	12
56	Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2020, 32, e2002038.	21.0	148
57	Crystalline, porous, covalent polyoxometalate-organic frameworks for lithium-ion batteries. Microporous and Mesoporous Materials, 2020, 299, 110105.	4.4	28
58	Zeolites in a good shape: Catalyst forming by extrusion modifies their performances. Microporous and Mesoporous Materials, 2020, 299, 110114.	4.4	44
59	Three-Dimensional Mesoporous Covalent Organic Frameworks through Steric Hindrance Engineering. Journal of the American Chemical Society, 2020, 142, 3736-3741.	13.7	113
60	Exfoliated Mesoporous 2D Covalent Organic Frameworks for Highâ€Rate Electrochemical Double‣ayer Capacitors. Advanced Materials, 2020, 32, e1907289.	21.0	136
61	New synthesis routes and catalytic applications of ferrierite crystals. Part 1: 1,8-Diaminooctane as a new OSDA. Microporous and Mesoporous Materials, 2020, 296, 109987.	4.4	8
62	Core–Shell Metal Zeolite Composite Catalysts for In Situ Processing of Fischer–Tropsch Hydrocarbons to Gasoline Type Fuels. ACS Catalysis, 2020, 10, 2544-2555.	11.2	34
63	Defect-engineered zeolite porosity and accessibility. Journal of Materials Chemistry A, 2020, 8, 3621-3631.	10.3	52
64	New synthesis routes and catalytic applications of ferrierite crystals. Part 2: The effect of OSDA type on zeolite properties and catalysis. Microporous and Mesoporous Materials, 2020, 296, 109988.	4.4	7
65	Synthesis of Embryonic Zeolites with Controlled Physicochemical Properties. Chemistry of Materials, 2020, 32, 2123-2132.	6.7	20
66	Binder-free preparation of ZSM-5@silica beads and their use for organic pollutant removal. Inorganic Chemistry Frontiers, 2020, 7, 2080-2088.	6.0	8
67	Threeâ€Ðimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie - International Edition, 2020, 59, 19633-19638.	13.8	49
68	Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. Journal of the American Chemical Society, 2019, 141, 13324-13329.	13.7	146
69	Carbon beads with a well-defined pore structure derived from ion-exchange resin beads. Journal of Materials Chemistry A, 2019, 7, 18285-18294.	10.3	16
70	Impact of the Zn source on the RSN-type zeolite formation. Inorganic Chemistry Frontiers, 2019, 6, 2279-2290.	6.0	5
71	Versatile Roles of Metal Species in Carbon Nanotube Templates for the Synthesis of Metal–Zeolite Nanocomposite Catalysts. ACS Applied Nano Materials, 2019, 2, 4507-4517.	5.0	9
72	Synthesis of zeolite SSZ-24 using a catalytic amount of SSZ-13 seeds. Inorganic Chemistry Frontiers, 2019, 6, 3097-3103.	6.0	12

#	Article	IF	CITATIONS
73	Three-dimensional Salphen-based Covalent–Organic Frameworks as Catalytic Antioxidants. Journal of the American Chemical Society, 2019, 141, 2920-2924.	13.7	193
74	Confinement and Time Immemorial: Prebiotic Synthesis of Nucleotides on a Porous Mineral Nanoreactor. Journal of Physical Chemistry Letters, 2019, 10, 4192-4196.	4.6	6
75	Preparation of Single-Crystal "House-of-Cards―like ZSM-5 and Their Performance in Ethanol-to-Hydrocarbon Conversion. Chemistry of Materials, 2019, 31, 4639-4648.	6.7	45
76	One-pot cascade syntheses of microporous and mesoporous pyrazine-linked covalent organic frameworks as Lewis-acid catalysts. Dalton Transactions, 2019, 48, 7352-7357.	3.3	26
77	Chemically stable polyarylether-based covalent organic frameworks. Nature Chemistry, 2019, 11, 587-594.	13.6	509
78	Hydrothermal synthesis and crystal structure of three-dimensional supramolecular zinc, manganese coordination polymers. Inorganic and Nano-Metal Chemistry, 2019, 49, 44-50.	1.6	2
79	Selective catalytic reduction of NOx over Cu- and Fe-exchanged zeolites and their mechanical mixture. Applied Catalysis B: Environmental, 2019, 250, 419-428.	20.2	61
80	Copper exchanged FAU nanozeolite as non-toxic nitric oxide and carbon dioxide gas carrier. Microporous and Mesoporous Materials, 2019, 280, 271-276.	4.4	7
81	Fast and efficient synthesis of SSZ-13 by interzeolite conversion of Zeolite Beta and Zeolite L. Microporous and Mesoporous Materials, 2019, 280, 306-314.	4.4	44
82	Fluoride etching opens the structure and strengthens the active sites of the layered ZSM-5 zeolite. Microporous and Mesoporous Materials, 2019, 280, 297-305.	4.4	17
83	Aligned High Density Semi onductive Ultra‧mall Singleâ€Walled Carbon Nanotubes. ChemistrySelect, 2019, 4, 12676-12679.	1.5	0
84	Ambient aqueous-phase synthesis of covalent organic frameworks for degradation of organic pollutants. Chemical Science, 2019, 10, 10815-10820.	7.4	65
85	Catalytic application of ferrierite nanocrystals in vapour-phase dehydration of methanol to dimethyl ether. Applied Catalysis B: Environmental, 2019, 243, 273-282.	20.2	65
86	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie - International Edition, 2018, 57, 6042-6048.	13.8	255
87	Fast, Ambient Temperature and Pressure Ionothermal Synthesis of Three-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 4494-4498.	13.7	283
88	MOF–cation exchange resin composites and their use for water decontamination. Inorganic Chemistry Frontiers, 2018, 5, 2784-2791.	6.0	15
89	Frontispiece: Tuning Zeolite Properties for a Highly Efficient Synthesis of Propylene from Methanol. Chemistry - A European Journal, 2018, 24, .	3.3	0
90	Supported Embryonic Zeolites and their Use to Process Bulky Molecules. ACS Catalysis, 2018, 8, 8199-8212.	11.2	37

#	Article	IF	CITATIONS
91	Tuning Zeolite Properties for a Highly Efficient Synthesis of Propylene from Methanol. Chemistry - A European Journal, 2018, 24, 13136-13149.	3.3	35
92	Uniform Generation of Sub-nanometer Silver Clusters in Zeolite Cages Exhibiting High Photocatalytic Activity under Visible Light. ACS Applied Materials & Interfaces, 2018, 10, 28702-28708.	8.0	29
93	Rücktitelbild: A 3D Organically Synthesized Porous Carbon Material for Lithium-Ion Batteries (Angew.) Tj ETQq1	1 0.7843 2.0	14 rgBT /O∨
94	A 3D Organically Synthesized Porous Carbon Material for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 11952-11956.	13.8	75
95	A 3D Organically Synthesized Porous Carbon Material for Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 12128-12132.	2.0	5
96	High-Visible-Light Photoactivity of Plasma-Promoted Vanadium Clusters on Nanozeolites for Partial Photooxidation of Methanol. ACS Applied Materials & Interfaces, 2017, 9, 17846-17855.	8.0	20
97	Opening the Cages of Faujasite-Type Zeolite. Journal of the American Chemical Society, 2017, 139, 17273-17276.	13.7	125
98	Three-Dimensional Ionic Covalent Organic Frameworks for Rapid, Reversible, and Selective Ion Exchange. Journal of the American Chemical Society, 2017, 139, 17771-17774.	13.7	211
99	Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H ₂ /CO ₂ . Journal of the American Chemical Society, 2016, 138, 7673-7680.	13.7	452
100	Nanosized inorganic porous materials: fabrication, modification and application. Journal of Materials Chemistry A, 2016, 4, 16756-16770.	10.3	43
101	A top-down approach to hierarchical SAPO-34 zeolites with improved selectivity of olefin. Microporous and Mesoporous Materials, 2016, 234, 401-408.	4.4	86
102	ZIF-derived in situ nitrogen decorated porous carbons for CO ₂ capture. Inorganic Chemistry Frontiers, 2016, 3, 1112-1118.	6.0	51
103	Hierarchical zeolites. MRS Bulletin, 2016, 41, 689-693.	3.5	42
104	The Mosaic Structure of Zeolite Crystals. Angewandte Chemie - International Edition, 2016, 55, 15049-15052.	13.8	88
105	Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis. Journal of the American Chemical Society, 2016, 138, 14783-14788.	13.7	260
106	The Mosaic Structure of Zeolite Crystals. Angewandte Chemie, 2016, 128, 15273-15276.	2.0	30
107	Iron loaded EMT nanosized zeolite with high affinity towards CO 2 and NO. Microporous and Mesoporous Materials, 2016, 232, 256-263.	4.4	12
108	The preparation of hierarchical SAPO-34 crystals via post-synthesis fluoride etching. Chemical Communications, 2016, 52, 3512-3515.	4.1	80

#	Article	IF	CITATIONS
109	Nanosized zeolites: Quo Vadis?. Comptes Rendus Chimie, 2016, 19, 183-191.	0.5	86
110	Embryonic ZSM-5 zeolites: zeolitic materials with superior catalytic activity in 1,3,5-triisopropylbenzene dealkylation. New Journal of Chemistry, 2016, 40, 4307-4313.	2.8	24
111	3D Study of the Morphology and Dynamics of Zeolite Nucleation. Chemistry - A European Journal, 2015, 21, 18316-18327.	3.3	22
112	On the remarkable resistance to coke formation of nanometer-sized and hierarchical MFI zeolites during ethanol to hydrocarbons transformation. Journal of Catalysis, 2015, 328, 165-172.	6.2	76
113	Template-free nanosized faujasite-type zeolites. Nature Materials, 2015, 14, 447-451.	27.5	360
114	Mesoporous zeolites by fluoride etching. Current Opinion in Chemical Engineering, 2015, 8, 1-6.	7.8	69
115	Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 2015, 44, 7207-7233.	38.1	291
116	Formation mechanism of three-membered ring containing microporous zincosilicate RUB-17. CrystEngComm, 2015, 17, 7063-7069.	2.6	3
117	In situ and post-synthesis control of physicochemical properties of FER-type crystals. Microporous and Mesoporous Materials, 2014, 200, 334-342.	4.4	49
118	Comparative Study of Nanoâ€ZSMâ€5 Catalysts Synthesized in OH ^{â^'} and F ^{â^'} Media. Advanced Functional Materials, 2014, 24, 257-264.	14.9	98
119	Ultra-fast framework stabilization of Ge-rich zeolites by low-temperature plasma treatment. Chemical Science, 2014, 5, 68-80.	7.4	38
120	Crystal Growth Kinetics as a Tool for Controlling the Catalytic Performance of a FAU-Type Basic Catalyst. ACS Catalysis, 2014, 4, 2333-2341.	11.2	38
121	Advances in nanosized zeolites. Nanoscale, 2013, 5, 6693.	5.6	337
122	Nucleation and crystal growth of zeolite A synthesised from hydrogels of different density. CrystEngComm, 2013, 15, 5784.	2.6	10
123	Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42, 263-290.	38.1	388
124	Porous Nanosized Particles: Preparation, Properties, and Applications. Chemical Reviews, 2013, 113, 6734-6760.	47.7	511
125	Framework Stability of Heteroatom-Substituted Forms of Extra-Large-Pore Ge-Silicate Molecular Sieves: The Case of ITQ-44. Chemistry of Materials, 2012, 24, 2509-2518.	6.7	26
126	Capturing Ultrasmall EMT Zeolite from Template-Free Systems. Science, 2012, 335, 70-73.	12.6	260

#	Article	IF	CITATIONS
127	High Energy Ion Irradiation-Induced Ordered Macropores in Zeolite Crystals. Journal of the American Chemical Society, 2011, 133, 18950-18956.	13.7	66
128	Crystal Size–Acid Sites Relationship Study of Nano- and Micrometer-Sized Zeolite Crystals. Journal of Physical Chemistry C, 2011, 115, 18603-18610.	3.1	34
129	Factors That Control Zeoliteâ€L Crystal Size. Chemistry - A European Journal, 2011, 17, 2199-2210.	3.3	38
130	Optical Encoding of Silver Zeolite Microcarriers. Advanced Materials, 2010, 22, 957-960.	21.0	115
131	Framework Stabilization of Ge-Rich Zeolites via Postsynthesis Alumination. Journal of the American Chemical Society, 2009, 131, 16580-16586.	13.7	95
132	Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template. Chemistry of Materials, 2009, 21, 4184-4191.	6.7	167
133	Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals. Industrial & Engineering Chemistry Research, 2009, 48, 7084-7091.	3.7	225
134	Investigations of a Sodiumâ^'Polyacrylate-Containing System Yielding Nanosized Boehmite Particles. Journal of Physical Chemistry C, 2008, 112, 18384-18392.	3.1	12
135	Gel evolution in a FAU-type zeolite yielding system at 90°C. Microporous and Mesoporous Materials, 2007, 101, 73-82.	4.4	43
136	Carbon spheres prepared from zeolite Beta beads. Carbon, 2005, 43, 2474-2480.	10.3	51
137	Carbon and SiC Macroscopic Beads from Ion-Exchange Resin Templates. Journal of the American Chemical Society, 2004, 126, 13624-13625.	13.7	29
138	Investigation of the Crystallization Stages of LTA-Type Zeolite by Complementary Characterization Techniques. European Journal of Inorganic Chemistry, 2003, 2003, 4370-4377.	2.0	64
139	Hydrocracking of Heavy Vacuum Gas Oil with a Pt/H-betaâ^'Al2O3Catalyst:Â Effect of Zeolite Crystal Size in the Nanoscale Range. Industrial & Engineering Chemistry Research, 2003, 42, 2773-2782.	3.7	82
140	Preparation of regular macroporous structures built of intergrown silicalite-1 nanocrystals. Journal of Materials Chemistry, 2002, 12, 1914-1918.	6.7	58
141	Silicalite-1 macrostructures – preparation and structural features. Microporous and Mesoporous Materials, 2000, 39, 91-101.	4.4	36
142	Amorphous very high surface area silica macrostructures. Journal of Materials Chemistry, 2000, 10, 2330-2337.	6.7	12
143	Tribochemical activation of seeds for rapid crystallization of zeolite Y. Zeolites, 1995, 15, 193-197.	0.5	39
144	Unlocking the potential of hidden sites in FAUJASITE: new insights in a proton transfer mechanism. Angewandte Chemie, 0, , .	2.0	4

#	Article	IF	CITATIONS
145	Threeâ€Dimensional Triptyceneâ€Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angewandte Chemie, 0, , .	2.0	12
146	Design and Synthesis of a Zeolitic Organic Framework. Angewandte Chemie, 0, , .	2.0	0
147	Deadlocks of adenine ribonucleotides synthesis: Evaluation of adsorption and condensation reactions into a zeolite micropore space. Inorganic Chemistry Frontiers, 0, , .	6.0	0