Olaf Deutschmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2017798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimizing Solid Oxide Fuel Cell Performance to Re-evaluate Its Role in the Mobility Sector. ACS Environmental Au, 2022, 2, 42-64.	7.0	14
2	Der Wasserstoffmotor – Chancen und Herausforderungen auf dem Weg zu einer dekarbonisierten Mobilitä Chemie-Ingenieur-Technik, 2022, 94, 217-229.	0.8	11
3	Bubble Cutting by Cylinder – Elimination of Wettability Effects by a Separating Liquid Film. Chemie-Ingenieur-Technik, 2022, 94, 385-392.	0.8	4
4	Oxidative Coupling of Methane over Pt/Al2O3 at High Temperature: Multiscale Modeling of the Catalytic Monolith. Catalysts, 2022, 12, 189.	3.5	6
5	Accelerating particle-resolved CFD simulations of catalytic fixed-bed reactors with DUO. Chemical Engineering Science, 2022, 250, 117408.	3.8	14
6	Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase. International Journal of Heat and Fluid Flow, 2022, 94, 108936.	2.4	2
7	Spatially Resolved Measurements of HNCO Hydrolysis over SCR Catalysts. Chemie-Ingenieur-Technik, 2022, 94, 738-746.	0.8	4
8	Deposition and decomposition of urea and its by-products on TiO2 and VWT-SCR catalysts. International Journal of Heat and Fluid Flow, 2022, 95, 108969.	2.4	4
9	Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-Methane systems via hierarchical multi-scale modelling. Applied Energy, 2022, 317, 119143.	10.1	15
10	Experimental and numerical investigation of NO oxidation on Pt/Al ₂ O ₃ - and NO _{<i>x</i>} storage on Pt/BaO/Al ₂ O ₃ -catalysts. Catalysis Science and Technology, 2022, 12, 4456-4470.	4.1	9
11	A step toward the numerical simulation of catalytic hydrogenation of nitrobenzene in Taylor flow at practical conditions. Chemical Engineering Science, 2021, 230, 116132.	3.8	12
12	Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling. Renewable Energy, 2021, 163, 78-87.	8.9	43
13	Homogeneous conversion of NO _x and NH ₃ with CH ₄ , CO, and C ₂ H ₄ at the diluted conditions of exhaustâ€gases of lean operated natural gas engines. International Journal of Chemical Kinetics, 2021, 53, 213-229.	1.6	12
14	Insights into the interaction kinetics between propene and NOx at moderate temperatures with experimental and modeling methods. Proceedings of the Combustion Institute, 2021, 38, 795-803.	3.9	15
15	Lean-Burn Natural Gas Engines: Challenges and Concepts for an Efficient Exhaust Gas Aftertreatment System. Emission Control Science and Technology, 2021, 7, 1-6.	1.5	29
16	Effects of Hydrothermal Aging on CO and NO Oxidation Activity over Monometallic and Bimetallic Pt-Pd Catalysts. Catalysts, 2021, 11, 300.	3.5	20
17	Spatiotemporal Investigation of the Temperature and Structure of a Pt/CeO ₂ Oxidation Catalyst for CO and Hydrocarbon Oxidation during Pulse Activation. Industrial & Engineering Chemistry Research, 2021, 60, 6662-6675.	3.7	17
18	A Unified Research Data Infrastructure for Catalysis Research – Challenges and Concepts. ChemCatChem, 2021, 13, 3223-3236.	3.7	45

#	Article	IF	CITATIONS
19	Morphological characterization of urea derived deposits in SCR systems. Chemical Engineering Journal, 2021, 409, 128230.	12.7	10
20	Reaction Kinetics of CO and CO ₂ Methanation over Nickel. Industrial & Engineering Chemistry Research, 2021, 60, 5792-5805.	3.7	81
21	Reduktion der CO 2 â€Emissionen aus den Abgasen der Stahlindustrie durch Trockenreformierung von Methan. Angewandte Chemie, 2021, 133, 11959-11964.	2.0	0
22	Reduction of CO ₂ Emission from Offâ€Gases of Steel Industry by Dry Reforming of Methane. Angewandte Chemie - International Edition, 2021, 60, 11852-11857.	13.8	27
23	Model-Based Optimization of Solid Oxide Electrolysis Cells and Stacks for Power-to-Gas Applications. ECS Meeting Abstracts, 2021, MA2021-03, 220-220.	0.0	0
24	Spreading and rebound dynamics of sub-millimetre urea-water-solution droplets impinging on substrates of varying wettability. Applied Mathematical Modelling, 2021, 95, 53-73.	4.2	26
25	Impact of gas phase reactions and catalyst poisons on the NH3-SCR activity of a V2O5-WO3/TiO2 catalyst at pre-turbine position. Applied Catalysis B: Environmental, 2021, 288, 119991.	20.2	21
26	Model-Based Optimization of Solid Oxide Electrolysis Cells and Stacks for Power-to-Gas Applications. ECS Transactions, 2021, 103, 545-554.	0.5	1
27	Advances and challenges of ammonia delivery by urea-water sprays in SCR systems. Progress in Energy and Combustion Science, 2021, 87, 100949.	31.2	43
28	Evaluation of models for bubble-induced turbulence by DNS and utilization in two-fluid model computations of an industrial pilot-scale bubble column. Chemical Engineering Research and Design, 2021, 175, 283-295.	5.6	3
29	Exploring the interaction kinetics of butene isomers and NOx at low temperatures and diluted conditions. Combustion and Flame, 2021, 233, 111557.	5.2	8
30	Kinetic modeling and simulation of high-temperature by-product formation from urea decomposition. Chemical Engineering Science, 2021, 246, 116876.	3.8	20
31	Selective Catalytic Reduction of NO _x with H ₂ for Cleaning Exhausts of Hydrogen Engines: Impact of H ₂ 0, O ₂ , and NO/H ₂ Ratio. Industrial & Engineering Chemistry Research, 2021, 60, 6613-6626.	3.7	39
32	CFD-Modeling of fluid domains with embedded monoliths with emphasis on automotive converters. Chemical Engineering and Processing: Process Intensification, 2020, 147, 107728.	3.6	10
33	PGM based catalysts for exhaust-gas after-treatment under typical diesel, gasoline and gas engine conditions with focus on methane and formaldehyde oxidation. Applied Catalysis B: Environmental, 2020, 265, 118571.	20.2	56
34	Investigation of HCHO Catalytic Oxidation over Platinum using Planar Laser-Induced Fluorescence. Applied Catalysis B: Environmental, 2020, 264, 118473.	20.2	15
35	Urea derived deposits in diesel exhaust gas after-treatment: Integration of urea decomposition kinetics into a CFD simulation. Chemical Engineering Science, 2020, 211, 115319.	3.8	19
36	Microkinetic Modeling of the Oxidation of Methane Over PdO Catalysts—Towards a Better Understanding of the Water Inhibition Effect. Catalysts, 2020, 10, 922.	3.5	22

#	Article	IF	CITATIONS
37	Dry and Steam Reforming of CH ₄ on Co-Hexaaluminate: On the Formation of Metallic Co and Its Influence on Catalyst Activity. Industrial & Engineering Chemistry Research, 2020, 59, 18790-18797.	3.7	12
38	Spatially and Temporally Resolved Measurements of NO Adsorption/Desorption over NOxâ€&torage Catalyst. ChemPhysChem, 2020, 21, 2497-2501.	2.1	5
39	Numerical Simulation of Methane and Propane Reforming Over a Porous Rh/Al2O3 Catalyst in Stagnation-Flows: Impact of Internal and External Mass Transfer Limitations on Species Profiles. Catalysts, 2020, 10, 915.	3.5	6
40	A Qualitative Numerical Study on Catalytic Hydrogenation of Nitrobenzene in Gas-Liquid Taylor Flow with Detailed Reaction Mechanism. Fluids, 2020, 5, 234.	1.7	3
41	Flexible energy conversion and storage via high-temperature gas-phase reactions: The piston engine as a polygeneration reactor. Renewable and Sustainable Energy Reviews, 2020, 133, 110264.	16.4	31
42	Freisetzung von toxischem HCN bei der Stickoxidreduktion mittels NH 3 ‣CR in mager betriebenen Erdgasmotoren. Angewandte Chemie, 2020, 132, 14530-14535.	2.0	4
43	Emission of Toxic HCN During NO _{<i>x</i>} Removal by Ammonia SCR in the Exhaust of Leanâ€Burn Natural Gas Engines. Angewandte Chemie - International Edition, 2020, 59, 14423-14428.	13.8	33
44	Deposit Formation from Urea Injection: a Comprehensive Modeling Approach. Emission Control Science and Technology, 2020, 6, 211-227.	1.5	22
45	Understanding sulfur poisoning of bimetallic Pd-Pt methane oxidation catalysts and their regeneration. Applied Catalysis B: Environmental, 2020, 278, 119244.	20.2	49
46	Influence of liquid composition on diffusive mass transfer in the lubricating film of Taylor flow—A study related to the hydrogenation of nitrobenzene. Chemical Engineering and Processing: Process Intensification, 2020, 149, 107835.	3.6	4
47	The effect of wetting characteristics, thermophysical properties, and roughness on spray-wall heat transfer in selective catalytic reduction systems. International Journal of Heat and Mass Transfer, 2020, 152, 119554.	4.8	12
48	A Holistic View on Urea Injection for NOx Emission Control: Impingement, Re-atomization, and Deposit Formation. Emission Control Science and Technology, 2020, 6, 228-243.	1.5	12
49	Performance analysis and temperature gradient of solid oxide fuel cell stacks operated with bio-oil sorption-enhanced steam reforming. International Journal of Hydrogen Energy, 2020, 45, 12108-12120.	7.1	8
50	<i>In situ</i> Activation of Bimetallic Pdâ^'Pt Methane Oxidation Catalysts. ChemCatChem, 2020, 12, 3712-3720.	3.7	32
51	Computational Fluid Dynamics of Catalytic Reactors. , 2020, , 1405-1438.		1
52	Maximum Spreading of Urea Water Solution during Drop Impingement. Chemical Engineering and Technology, 2019, 42, 2419-2427.	1.5	9
53	Thermal Decomposition of a Single AdBlue® Droplet Including Wall–Film Formation in Turbulent Cross-Flow in an SCR System. Energies, 2019, 12, 2600.	3.1	8
54	Thermodynamics and reaction mechanism of urea decomposition. Physical Chemistry Chemical Physics, 2019, 21, 16785-16797.	2.8	100

#	Article	IF	CITATIONS
55	Heat transfer during spray/wall interaction with urea water solution: An experimental parameter study. International Journal of Heat and Fluid Flow, 2019, 78, 108432.	2.4	13
56	Performance analysis of a reversible solid oxide cell system based on multi-scale hierarchical solid oxide cell modelling. Energy Conversion and Management, 2019, 196, 484-496.	9.2	31
57	The internal combustion engine as a CO2 reformer. Combustion and Flame, 2019, 207, 186-195.	5.2	26
58	Dynamic Modeling of Reversible Solid Oxide Cells. Chemie-Ingenieur-Technik, 2019, 91, 833-842.	0.8	12
59	NH ₃ -SCR over V–W/TiO ₂ Investigated by Operando X-ray Absorption and Emission Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 14338-14349.	3.1	20
60	The Effect of Prereduction on the Performance of Pd/Al ₂ O ₃ and Pd/CeO ₂ Catalysts during Methane Oxidation. Industrial & Engineering Chemistry Research, 2019, 58, 12561-12570.	3.7	58
61	Trendbericht Technische Chemie. Nachrichten Aus Der Chemie, 2019, 67, 50-58.	0.0	Ο
62	CaRMeN: An Improved Computer-Aided Method for Developing Catalytic Reaction Mechanisms. Catalysts, 2019, 9, 227.	3.5	21
63	Unravelling the Different Reaction Pathways for Low Temperature CO Oxidation on Pt/CeO ₂ and Pt/Al ₂ 0 ₃ by Spatially Resolved Structure–Activity Correlations. Journal of Physical Chemistry Letters, 2019, 10, 7698-7705.	4.6	58
64	Characterization of solid deposits from urea water solution injected into a hot gas test rig. Chemical Engineering Journal, 2019, 377, 119855.	12.7	33
65	Homogeneous oxidation of light alkanes in the exhaust of turbocharged lean-burn gas engines. Chemical Engineering Journal, 2019, 377, 119800.	12.7	14
66	Formaldehyde Oxidation Over Platinum: On the Kinetics Relevant to Exhaust Conditions of Lean-Burn Natural Gas Engines. Topics in Catalysis, 2019, 62, 206-213.	2.8	8
67	Impact of the Support on the Catalytic Performance, Inhibition Effects and SO2 Poisoning Resistance of Pt-Based Formaldehyde Oxidation Catalysts. Topics in Catalysis, 2019, 62, 198-205.	2.8	14
68	Selective Catalytic Reduction of NOx with Ammonia and Hydrocarbon Oxidation Over V2O5–MoO3/TiO2 and V2O5–WO3/TiO2 SCR Catalysts. Topics in Catalysis, 2019, 62, 129-139.	2.8	16
69	Surface reaction kinetics of methane oxidation over PdO. Journal of Catalysis, 2019, 370, 152-175.	6.2	105
70	Reverse water gas shift (RWGS) over Ni – Spatially-resolved measurements and simulations. Chemical Engineering Journal, 2019, 362, 430-441.	12.7	29
71	On the challenges and constrains of ultra-low emission limits: Formaldehyde oxidation in catalytic sinusoidal-shaped channels. Chemical Engineering Science, 2019, 195, 841-850.	3.8	21
72	On suitability of phase-field and algebraic volume-of-fluid OpenFOAM® solvers for gas–liquid microfluidic applications. Computer Physics Communications, 2019, 236, 72-85.	7.5	25

#	Article	IF	CITATIONS
73	Regeneration of Sulfur Poisoned Pd–Pt/CeO2–ZrO2–Y2O3–La2O3 and Pd–Pt/Al2O3 Methane Oxidati Catalysts. Topics in Catalysis, 2019, 62, 164-171.	on 2.8	20
74	Dynamic behavior and control strategy study of CO2/H2O co-electrolysis in solid oxide electrolysis cells. Journal of Power Sources, 2019, 412, 255-264.	7.8	39
75	New experimental insights in AdBlue-spray/wall interaction and its impacts on EGT system design. Proceedings, 2019, , 142-154.	0.3	0
76	CaRMeN: a tool for analysing and deriving kinetics in the real world. Physical Chemistry Chemical Physics, 2018, 20, 10857-10876.	2.8	24
77	A reduced model for the evaporation and decomposition of urea–water solution droplets. International Journal of Heat and Fluid Flow, 2018, 70, 216-225.	2.4	13
78	vasQchip: A Novel Microfluidic, Artificial Blood Vessel Scaffold for Vascularized 3D Tissues. Advanced Materials Technologies, 2018, 3, 1700246.	5.8	15
79	Thermodynamic Considerations on the Oxidation State of Co/γâ€Al ₂ O ₃ and Ni/γâ€Al ₂ O ₃ Catalysts under Dry and Steam Reforming Conditions. ChemCatChem, 2018, 10, 751-757.	3.7	39
80	Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models. Heat and Mass Transfer, 2018, 54, 697-713.	2.1	5
81	Single droplet impingement of urea water solution on a heated substrate. International Journal of Heat and Fluid Flow, 2018, 69, 55-61.	2.4	54
82	3D modeling of a CPOX-reformer including detailed chemistry and radiation effects with DUO. Computers and Chemical Engineering, 2018, 109, 166-178.	3.8	15
83	Computational Fluid Dynamics of Catalytic Reactors. , 2018, , 1-34.		4
84	Chemie Ingenieur Technik und ACHEMA - Zwei Partner mit langer Tradition. Chemie-Ingenieur-Technik, 2018, 90, 747-747.	0.8	0
85	Hierarchical modeling of solid oxide cells and stacks producing syngas via H2O/CO2 Co-electrolysis for industrial applications. Applied Energy, 2018, 230, 996-1013.	10.1	60
86	Oxidative dehydrogenation of butenes over Biâ€Mo and Moâ€V based catalysts in a twoâ€zone fluidized bed reactor. AICHE Journal, 2017, 63, 43-50.	3.6	13
87	Surface Reaction Kinetics of the Oxidation and Reforming of Propane over Rh/Al ₂ O ₃ Catalysts. ChemCatChem, 2017, 9, 685-695.	3.7	18
88	Elementary kinetics of the oxygen reduction reaction on LSM-YSZ composite cathodes. Journal of Catalysis, 2017, 346, 30-49.	6.2	27
89	CFD Simulation of Liquid Back Suction and Gas Bubble Formation in a Circular Tube with Sudden or Gradual Expansion. Emission Control Science and Technology, 2017, 3, 289-301.	1.5	13
90	Model-Based Optimization of Ammonia Dosing in NH3-SCR of NO x for Transient Driving Cycle: Model Development and Simulation. Emission Control Science and Technology, 2017, 3, 249-262.	1.5	3

#	Article	IF	CITATIONS
91	Optimization of axial catalyst loading in transient-operated zone-structured monoliths: Reduction of cumulative emissions in automotive oxidation catalysts. Chemical Engineering Science, 2017, 174, 189-202.	3.8	7
92	Nitric Oxide Reduction of Heavy-Duty Diesel Off-Gas by NH3-SCR in Front of the Turbocharger. Emission Control Science and Technology, 2017, 3, 275-288.	1.5	15
93	Sulfur poisoning and regeneration of bimetallic Pd-Pt methane oxidation catalysts. Applied Catalysis B: Environmental, 2017, 218, 833-843.	20.2	66
94	Real-time Simulation of Dual-Layer Catalytic Converters Based on the Internal Mass Transfer Coefficient Approach. Topics in Catalysis, 2017, 60, 225-229.	2.8	12
95	Methane Oxidation over Palladium: On the Mechanism in Fuel-Rich Mixtures at High Temperatures. Topics in Catalysis, 2017, 60, 83-109.	2.8	33
96	The Impact of Pre-Turbine Catalyst Placement on Methane Oxidation in Lean-Burn Gas Engines: An Experimental and Numerical Study. , 2017, , .		6
97	Spatial Concentration Profiles for the Catalytic Partial Oxidation of Jet Fuel Surrogates in a Rh/Al2O3 Coated Monolith. Catalysts, 2016, 6, 207.	3.5	5
98	Surface Reaction Kinetics of the Oxidation and Reforming of CH ₄ over Rh/Al ₂ O ₃ Catalysts. International Journal of Chemical Kinetics, 2016, 48, 144-160.	1.6	44
99	Numerical study on the wettability dependent interaction of a rising bubble with a periodic open cellular structure. Catalysis Today, 2016, 273, 151-160.	4.4	22
100	Elementary Reaction Modeling and Experimental Characterization on Methane Partial Oxidation within a Catalyst-Enhanced Porous Media Combustor. Energy & (2016, 2016, 30, 7778-7785.)	5.1	10
101	CFD Evaluation of In Situ Probe Techniques for Catalytic Honeycomb Monoliths. Emission Control Science and Technology, 2016, 2, 188-203.	1.5	11
102	Oxidative Dehydrogenation of a C4 Raffinateâ€2 towards 1,3â€Butadiene in a Twoâ€Zone Fluidized Bed. Chemie-Ingenieur-Technik, 2016, 88, 1723-1729.	0.8	1
103	Formation of Urea-Based Deposits in an Exhaust System: Numerical Predictions and Experimental Observations on a Hot Gas Test Bench. Emission Control Science and Technology, 2016, 2, 115-123.	1.5	58
104	Flow and pressure characteristics in rectangular channels with internal cylindrical bodies. Chemical Engineering Science, 2016, 149, 296-305.	3.8	7
105	Cu-SSZ-13 as pre-turbine NOx-removal-catalyst: Impact of pressure and catalyst poisons. Applied Catalysis B: Environmental, 2016, 198, 548-557.	20.2	36
106	Impact of sulfur on catalytic partial oxidation of jet fuel surrogates over Rh/Al 2 O 3. International Journal of Hydrogen Energy, 2016, 41, 3701-3711.	7.1	6
107	Oxidative dehydrogenation of n-butane to butadiene with Mo-V-MgO catalysts in a two-zone fluidized bed reactor. Applied Catalysis A: General, 2016, 511, 23-30.	4.3	39
108	A one-dimensional modeling approach for dual-layer monolithic catalysts. Chemical Engineering Science, 2016, 139, 196-210.	3.8	21

#	Article	IF	CITATIONS
109	Two-Zone Fluidized Bed Reactors for Butadiene Production: A Multiphysical Approach with Solver Coupling for Supercomputing Application. , 2016, , 269-280.		2
110	Kinetic Monte Carlo simulations of surface reactions on supported nanoparticles: A novel approach and computer code. Journal of Chemical Physics, 2015, 143, 044108.	3.0	30
111	Numerical Simulation of Wetting Phenomena with a Phaseâ€Field Method Using OpenFOAM®. Chemical Engineering and Technology, 2015, 38, 1985-1992.	1.5	49
112	Twoâ€Dimensional Spatial Resolution of Concentration Profiles in Catalytic Reactors by Planar Laserâ€Induced Fluorescence: NO Reduction over Diesel Oxidation Catalysts. Angewandte Chemie, 2015, 127, 2691-2693.	2.0	2
113	Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts. Catalysts, 2015, 5, 871-904.	3.5	129
114	Mass Transfer Effects in Stagnation Flows on a Porous Catalyst: Water-Gas-Shift Reaction Over Rh/Al ₂ O ₃ . Zeitschrift Fur Physikalische Chemie, 2015, 229, 709-737.	2.8	12
115	On the coke deposition in dry reforming of methane at elevated pressures. Applied Catalysis A: General, 2015, 504, 599-607.	4.3	97
116	Twoâ€Dimensional Spatial Resolution of Concentration Profiles in Catalytic Reactors by Planar Laserâ€Induced Fluorescence: NO Reduction over Diesel Oxidation Catalysts. Angewandte Chemie - International Edition, 2015, 54, 2653-2655.	13.8	30
117	Numerical optimization and reaction flow analysis of syngas production via partial oxidation of natural gas in internal combustion engines. International Journal of Hydrogen Energy, 2015, 40, 11046-11058.	7.1	35
118	An Elementary Kinetic Model for the Electrochemical Reduction of Oxygen on LSM/YSZ Composite Cathodes. ECS Transactions, 2015, 68, 713-727.	0.5	1
119	Influence of gas composition on activity and durability of bimetallic Pd-Pt/Al2O3 catalysts for total oxidation of methane. Catalysis Today, 2015, 258, 470-480.	4.4	93
120	Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming. Applied Energy, 2015, 149, 161-175.	10.1	60
121	Numerical simulation of a structured catalytic methane reformer by DUO: The new computational interface for OpenFOAM® and DETCHEMâ,,¢. Catalysis Today, 2015, 258, 230-240.	4.4	36
122	Soot and hydrocarbon oxidation over vanadia-based SCR catalysts. Catalysis Today, 2015, 258, 461-469.	4.4	31
123	Modeling of the Interactions Between Catalytic Surfaces and Gas-Phase. Catalysis Letters, 2015, 145, 272-289.	2.6	65
124	A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis. Journal of Power Sources, 2015, 274, 768-781.	7.8	88
125	Structure–Activity Relationships of Nickel–Hexaaluminates in Reforming Reactions Partâ€I: Controlling Nickel Nanoparticle Growth and Phase Formation. ChemCatChem, 2014, 6, 1438-1446.	3.7	9
126	In Situ Investigations of Catalytic NO Reduction Inside an Optically Accessible Flow Reactor. Chemie-Ingenieur-Technik, 2014, 86, 538-543.	0.8	1

#	Article	IF	CITATIONS
127	Modelling of local aging effects of commercial threeâ€way catalysts: Spatial temperature and CO conversion profiles. Canadian Journal of Chemical Engineering, 2014, 92, 1587-1596.	1.7	8
128	Untersuchung der Dehydrierung und der oxidativen Dehydrierung vonn-Butan an Platin und V-basierten Katalysatoren in einem Zwei-Zonen-Wirbelschichtreaktor. Chemie-Ingenieur-Technik, 2014, 86, 1539-1539.	0.8	0
129	Structure–Activity Relationships of Nickel–Hexaaluminates in Reforming Reactions Partâ€II: Activity and Stability of Nanostructured Nickel–Hexaaluminateâ€Based Catalysts in the Dry Reforming of Methane. ChemCatChem, 2014, 6, 1447-1452.	3.7	21
130	Spatial Resolution of Species and Temperature Profiles in Catalytic Reactors. Advances in Chemical Engineering, 2014, 45, 41-95.	0.9	6
131	Kinetic modeling of urea decomposition based on systematic thermogravimetric analyses of urea and its most important by-products. Chemical Engineering Science, 2014, 106, 1-8.	3.8	112
132	Answer to the Comment from Goguet et al. to the paper "The Critical evaluation of in situ probe techniques for catalytic honeycomb monoliths―by Hettel et al. [1]. Catalysis Today, 2014, 236, 209-213.	4.4	11
133	Correlation between catalytic activity and catalytic surface area of a Pt/Al2O3 DOC: An experimental and microkinetic modeling study. Applied Catalysis B: Environmental, 2014, 156-157, 153-165.	20.2	52
134	A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production. Chemical Engineering Science, 2014, 110, 83-93.	3.8	55
135	A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning. Applied Catalysis A: General, 2014, 471, 118-125.	4.3	81
136	Kinetics of the water-gas shift reaction over Rh/Al2O3 catalysts. Applied Catalysis A: General, 2014, 470, 31-44.	4.3	45
137	Natural Gas Steam Reforming over Rhodium/Alumina Catalysts: Experimental and Numerical Study of the Carbon Deposition from Ethylene and Carbon Monoxide. Industrial & Engineering Chemistry Research, 2014, 53, 12270-12278.	3.7	12
138	Hydrogen production by catalytic partial oxidation of methane over staged Pd/Rh coated monoliths: Spatially resolved concentration and temperature profiles. International Journal of Hydrogen Energy, 2014, 39, 17998-18004.	7.1	34
139	Macro―and Microkinetic Simulation of Diesel Oxidation Catalyst: Effect of Aging, Noble Metal Loading and Platinum Oxidation. Chemie-Ingenieur-Technik, 2013, 85, 673-685.	0.8	12
140	Effect of Hydrothermal Aging on Physical and Chemical Properties of a Commercial NOx-Storage Catalyst. Topics in Catalysis, 2013, 56, 293-297.	2.8	7
141	Modeling of Solid-Oxide Electrolyser Cells: From H ₂ , CO Electrolysis to Co-Electrolysis. ECS Transactions, 2013, 57, 3207-3216.	0.5	8
142	Numerical modeling of stagnation-flows on porous catalytic surfaces: CO oxidation on Rh/Al2O3. Chemical Engineering Science, 2013, 104, 899-907.	3.8	37
143	Internal Multi-Physics Phenomena of SOFC with Direct Internal Reforming. ECS Transactions, 2013, 57, 2475-2484.	0.5	1
144	Thermal expansion of pyrolytic carbon with various textures. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2013, 93, 338-345.	1.6	5

#	Article	IF	CITATIONS
145	Methane Dry Reforming at High Temperature and Elevated Pressure: Impact of Gas-Phase Reactions. Industrial & Engineering Chemistry Research, 2013, 52, 11920-11930.	3.7	79
146	Catalytic ignition of light hydrocarbons over Rh/Al2O3 studied in a stagnation-point flow reactor. Proceedings of the Combustion Institute, 2013, 34, 2313-2320.	3.9	14
147	Kinetics of hydrogen oxidation on Rh/Al2O3 catalysts studied in a stagnation-flow reactor. Chemical Engineering Science, 2013, 89, 171-184.	3.8	34
148	Critical evaluation of in situ probe techniques for catalytic honeycomb monoliths. Catalysis Today, 2013, 216, 2-10.	4.4	66
149	Numerical Simulation of Catalytic Reactors by Molecular-Based Models. Contributions in Mathematical and Computational Sciences, 2013, , 227-250.	0.3	1
150	Catalytic partial oxidation of ethanol over Rh/Al2O3: Spatially resolved temperature and concentration profiles. Applied Catalysis A: General, 2013, 467, 530-541.	4.3	54
151	Raman microprobe spectrometry of carbon/carbon composites with differentlyâ€ŧextured pyrolytic carbon matrices. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2013, 93, 329-337.	1.6	7
152	Exhaust Gas Aftertreatment in Mobile Systems: Status, Challenges, and Perspectives. Chemie-Ingenieur-Technik, 2013, 85, 595-617.	0.8	83
153	A simple method for CO chemisorption studies under continuous flow: Adsorption and desorption behavior of Pt/Al2O3 catalysts. Applied Catalysis A: General, 2012, 445-446, 221-230.	4.3	42
154	Hydrogen production by partial oxidation of ethanol/gasoline blends over Rh/Al2O3. Catalysis Today, 2012, 197, 90-100.	4.4	11
155	Microstructure characterization of CVI-densified carbon/carbon composites with various fiber distributions. Composites Science and Technology, 2012, 72, 1892-1900.	7.8	53
156	A Model-Based Interpretation of the Influence of Anode Surface Chemistry on Solid Oxide Fuel Cell Electrochemical Impedance Spectra. Journal of the Electrochemical Society, 2012, 159, F255-F266.	2.9	28
157	Catalytic Partial Oxidation of Isooctane to Hydrogen on Rhodium Catalysts: Effect of Tail-Gas Recycling. Industrial & Engineering Chemistry Research, 2012, 51, 7536-7546.	3.7	12
158	A novel approach to model the transient behavior of solid-oxide fuel cell stacks. Journal of Power Sources, 2012, 214, 227-238.	7.8	31
159	Fuel Processing for Fuel Cells. Advances in Chemical Engineering, 2012, , 1-64.	0.9	14
160	Catalytic reforming of logistic fuels at high-temperatures. Catalysis, 2012, , 48-82.	1.0	6
161	Untersuchung der katalytischen Partialoxidation von Ethanol anhand ortsaufgelĶster Konzentrations- und Temperaturprofile. Chemie-Ingenieur-Technik, 2012, 84, 1239-1239.	0.8	0
162	Interaction of Mass Transport and Reaction Kinetics during Electrocatalytic CO Oxidation in a Thin-Layer Flow Cell. Journal of Physical Chemistry C, 2011, 115, 468-478.	3.1	22

#	Article	IF	CITATIONS
163	Coke Formation in Steam Reforming of Natural Gas over Rhodium/Alumina Catalysts: An Atomic Force Microscopy Study using the Oscillating Friction Mode. Zeitschrift Fur Physikalische Chemie, 2011, 225, 1207-1224.	2.8	2
164	Modeling diffusion limitation in solid-oxide fuel cells. Electrochimica Acta, 2011, 56, 9775-9782.	5.2	43
165	Micro-kinetic modeling of NH3 decomposition on Ni and its application to solid oxide fuel cells. Chemical Engineering Science, 2011, 66, 5184-5191.	3.8	48
166	Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism. Topics in Catalysis, 2011, 54, 845-858.	2.8	171
167	Influence of gas-phase reactions on catalytic reforming of isooctane. Proceedings of the Combustion Institute, 2011, 33, 3177-3183.	3.9	25
168	High Temperature Catalysis: Efficient Way for Chemical Conversion of Logistic Fuels. Chemie-Ingenieur-Technik, 2011, 83, 1954-1964.	0.8	6
169	Bestimmung lokaler Alterungseffekte von Drei-Wege-Katalysatoren durch Analyse deren rÃ u mlicher Temperaturverteilung im Betrieb. Chemie-Ingenieur-Technik, 2011, 83, 1688-1696.	0.8	1
170	Numerical study of on-board fuel reforming in a catalytic plate reactor for solid-oxide fuel cells. Chemical Engineering Science, 2011, 66, 490-498.	3.8	8
171	Interaction of heterogeneous and homogeneous kinetics with mass and heat transfer in catalytic reforming of logistic fuels. Combustion and Flame, 2011, 158, 796-808.	5.2	32
172	Hydrogen production by catalytic partial oxidation of iso-octane at varying flow rate and fuel/oxygen ratio: From detailed kinetics to reactor behavior. Applied Catalysis A: General, 2011, 391, 144-152.	4.3	30
173	Dry reforming of methane in a stagnation-flow reactor using Rh supported on strontium-substituted hexaaluminate. Applied Catalysis A: General, 2011, 394, 257-265.	4.3	52
174	Chemistry and kinetics of chemical vapor deposition of pyrolytic carbon from ethanol. Proceedings of the Combustion Institute, 2011, 33, 1843-1850.	3.9	24
175	Promoted and Un-Promoted Co/SiO ₂ Fischer-Tropsch Catalysts. Advanced Materials Research, 2011, 287-290, 3093-3097.	0.3	1
176	Viscous co urrent downward Taylor flow in a square mini hannel. AICHE Journal, 2010, 56, 1693-1702.	3.6	19
177	Modeling of transport and chemistry in channel flows of automotive catalytic converters. Chemical Engineering Science, 2010, 65, 812-826.	3.8	107
178	Modellierung und Simulation chemischer Reaktoren: Beispiel Autoabgaskatalyse. Chemie-Ingenieur-Technik, 2010, 82, 1308-1308.	0.8	0
179	Catalytic partial oxidation of ethanol on alumina-supported rhodium catalysts: An experimental study. Applied Catalysis A: General, 2010, 388, 225-231.	4.3	44
180	Catalytic partial oxidation of iso-octane over rhodium catalysts: An experimental, modeling, and simulation study. Combustion and Flame, 2010, 157, 1771-1782.	5.2	81

#	Article	IF	CITATIONS
181	Elastic constants of high-texture pyrolytic carbon measured by ultrasound phase spectroscopy. Carbon, 2010, 48, 3647-3650.	10.3	34
182	Synthesis of Pyrolytic Carbon Composites Using Ethanol As Precursor. Industrial & Engineering Chemistry Research, 2010, 49, 10421-10427.	3.7	9
183	Loading and Aging Effects in Exhaust Gas After-Treatment Catalysts with Pt As Active Component. Industrial & Engineering Chemistry Research, 2010, 49, 10303-10310.	3.7	28
184	Product gas evolution above planar microstructured model catalysts—A combined scanning mass spectrometry, Monte Carlo, and Computational Fluid Dynamics study. Journal of Chemical Physics, 2010, 133, 094504.	3.0	11
185	Coupling Complex Reformer Chemical Kinetics with Three-Dimensional Computational Fluid Dynamics. ECS Transactions, 2009, 25, 1253-1262.	0.5	9
186	Experimentelle Untersuchung der katalytischen Partialoxidation von Modellkraftstoffen unter definierten Randbedingungen. Chemie-Ingenieur-Technik, 2009, 81, 909-919.	0.8	15
187	Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry. Journal of Analytical and Applied Pyrolysis, 2009, 86, 148-160.	5.5	91
188	Steam reforming of hexadecane over a Rh/CeO2 catalyst in microchannels: Experimental and numerical investigation. International Journal of Hydrogen Energy, 2009, 34, 5108-5120.	7.1	78
189	Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst. Catalysis Today, 2009, 142, 42-51.	4.4	177
190	Catalytic partial oxidation of higher hydrocarbon fuel components on Rh/Al2O3 coated honeycomb monoliths. Catalysis Today, 2009, 147, S204-S209.	4.4	32
191	Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases. Applied Catalysis B: Environmental, 2009, 91, 47-58.	20.2	121
192	Pyrolysis of propane under vacuum carburizing conditions: An experimental and modeling study. Journal of Analytical and Applied Pyrolysis, 2008, 81, 148-156.	5.5	33
193	Detailed chemical kinetic modeling of pyrolysis of ethylene, acetylene, and propylene at 1073–1373 K with a plugâ€flow reactor model. International Journal of Chemical Kinetics, 2008, 40, 199-208.	1.6	69
194	Optimization of twoâ€dimensional flows with homogeneous and heterogeneously catalyzed gasâ€phase reactions. AICHE Journal, 2008, 54, 2432-2440.	3.6	18
195	Three-phase boundary length in solid-oxide fuel cells: A mathematical model. Journal of Power Sources, 2008, 178, 368-372.	7.8	99
196	Modeling and simulation of materials synthesis: Chemical vapor deposition and infiltration of pyrolytic carbon. Composites Science and Technology, 2008, 68, 1097-1104.	7.8	51
197	Fast Solution for Large-Scale 2-D Convection-Diffusion, Reacting Flows. Lecture Notes in Computer Science, 2008, , 1121-1130.	1.3	2
198	Modeling of Solid-Oxide Fuel Cells. Zeitschrift Fur Physikalische Chemie, 2007, 221, 443-478.	2.8	64

#	Article	IF	CITATIONS
199	Steam reforming of natural gas on noble-metal based catalysts: Predictive modeling. Studies in Surface Science and Catalysis, 2007, , 207-212.	1.5	4
200	Efficiency Analysis of Planar Solid Oxide Fuel Cell at Direct Internal Reforming Conditions. ECS Transactions, 2007, 7, 1939-1943.	0.5	1
201	Detailed Kinetic Modeling of Gas-Phase Reactions in the Chemical Vapor Deposition of Carbon from Light Hydrocarbons. Industrial & Engineering Chemistry Research, 2007, 46, 3547-3557.	3.7	153
202	Modeling and Simulation of NOx Abatement with Storage/Reduction Catalysts for Lean Burn and Diesel Engines. , 2007, , .		10
203	A novel CVD/CVI reactor with an in-situ sampling apparatus connected to an online GC/MS. Surface and Coatings Technology, 2007, 201, 8939-8943.	4.8	1
204	Growth of novel carbon phases by methane infiltration of free-standing single-walled carbon nanotube films. Carbon, 2007, 45, 1085-1096.	10.3	7
205	Rational modeling of the CPO of methane over platinum gauze. Catalysis Today, 2007, 119, 311-316.	4.4	18
206	Rate constants for the H abstraction from alkanes (R–H) by R′O2 radicals: A systematic study on the impact of R and R′. Proceedings of the Combustion Institute, 2007, 31, 149-157.	3.9	89
207	Nonaligned Carbon Nanotubes Anchored on Porous Alumina: Formation, Process Modeling, Gas-Phase Analysis, and Field-Emission Properties. Small, 2007, 3, 974-985.	10.0	7
208	Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems. Applied Catalysis B: Environmental, 2007, 70, 119-127.	20.2	263
209	Numerical study of mass and heat transport in solid-oxide fuel cells running on humidified methane. Chemical Engineering Science, 2007, 62, 5473-5486.	3.8	82
210	Transient modeling of chemical vapor infiltration of methane using multi-step reaction and deposition models. Chemical Engineering Science, 2007, 62, 4976-4982.	3.8	39
211	Performance analysis of a SOFC under direct internal reforming conditions. Journal of Power Sources, 2007, 172, 296-307.	7.8	100
212	Optimization of Reactive Flows in a Single Channel of a Catalytic Monolith: Conversion of Ethane to Ethylene. , 2007, , 291-310.		0
213	Reaction Processes on Catalytically Active Surfaces. , 2007, , 311-340.		0
214	The effect of cooling rate on hydrogen release from a pyrolytic carbon coating and its resulting morphology. Carbon, 2006, 44, 1330-1334.	10.3	15
215	Analysis of gas phase compounds in chemical vapor deposition of carbon from light hydrocarbons. Carbon, 2006, 44, 1790-1800.	10.3	85
216	Modeling the high-temperature catalytic partial oxidation of methane over platinum gauze: Detailed gas-phase and surface chemistries coupled with 3D flow field simulations. Applied Catalysis A: General, 2006, 303, 166-176.	4.3	99

#	Article	IF	CITATIONS
217	CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. Journal of Power Sources, 2006, 162, 1192-1202.	7.8	276
218	Recent advances in numerical modeling of catalytic monolith reactors. Catalysis Today, 2005, 105, 407-413.	4.4	76
219	Methane reforming kinetics within a Ni–YSZ SOFC anode support. Applied Catalysis A: General, 2005, 295, 40-51.	4.3	290
220	Influence of Coadsorbates on the NO Dissociation on a Rhodium(311) Surface. ChemPhysChem, 2005, 6, 2513-2521.	2.1	15
221	Coverage dependence of oxygen decomposition and surface diffusion on rhodium (111): A DFT study. Journal of Chemical Physics, 2005, 122, 034710.	3.0	56
222	Influence of initial oxygen coverage and magnetic moment on the NO decomposition on rhodium (111). Journal of Chemical Physics, 2005, 122, 154702.	3.0	29
223	Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells. Journal of the Electrochemical Society, 2005, 152, A2427.	2.9	427
224	Towards a better understanding of transient processes in catalytic oxidation reactors. Studies in Surface Science and Catalysis, 2004, 147, 511-516.	1.5	4
225	Modeling the partial oxidation of methane in a fixed bed with detailed chemistry. AICHE Journal, 2004, 50, 1289-1299.	3.6	59
226	Study of catalysts for catalytic burners for fuel cell power plant reformers. Korean Journal of Chemical Engineering, 2003, 20, 461-467.	2.7	16
227	Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith. Chemical Engineering Science, 2003, 58, 633-642.	3.8	227
228	Miniaturized Reactor Concepts and Advanced Analytics for Primary Screening in High-Throughput Experimentation. , 2003, , 491-523.		8
229	Simulating cyclohexane millisecond oxidation: Coupled chemistry and fluid dynamics. AICHE Journal, 2002, 48, 1241-1256.	3.6	17
230	Extinction limits of catalytic combustion in microchannels. Proceedings of the Combustion Institute, 2002, 29, 957-963.	3.9	132
231	Sum-frequency generation in situ study of CO adsorption and catalytic CO oxidation on rhodium at elevated pressures. Proceedings of the Combustion Institute, 2002, 29, 973-980.	3.9	26
232	Experimental and numerical investigation of the ignition of methane combustion in a platinum-coated honeycomb monolith. Proceedings of the Combustion Institute, 2002, 29, 1005-1011.	3.9	33
233	Natural Gas Conversion in Monolithic Catalysts: Interaction of Chemical Reactions and Transport Phenomena. Studies in Surface Science and Catalysis, 2001, 136, 251-258.	1.5	86
234	Numerical studies of the heterogeneous combustion of char using detailed chemistry. Chemosphere, 2001, 42, 609-613.	8.2	13

#	Article	IF	CITATIONS
235	Detailed surface reaction mechanism in a three-way catalyst. Faraday Discussions, 2001, 119, 371-384.	3.2	225
236	Transient three-dimensional simulations of a catalytic combustion monolith using detailed models for heterogeneous and homogeneous reactions and transport phenomena. Catalysis Today, 2001, 69, 57-62.	4.4	94
237	Millisecond catalytic wall reactors: I. Radiant burner. AICHE Journal, 2001, 47, 1177-1184.	3.6	19
238	Nutzung detaillierter chemischer Reaktionsmodelle in CFD-Berechnungen. Chemie-Ingenieur-Technik, 2000, 72, 987-988.	0.8	2
239	Modeling of on-line catalyst addition effects in a short contact time reactor. Proceedings of the Combustion Institute, 2000, 28, 1365-1372.	3.9	7
240	Modeling of chemical vapor deposition of diamond films from acetylene-oxygen flames. Proceedings of the Combustion Institute, 2000, 28, 1455-1461.	3.9	23
241	Process optimization of reactives systems by partially reduced SQP methods. Computers and Chemical Engineering, 2000, 24, 89-97.	3.8	19
242	A critical evaluation of Navier–Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith. Catalysis Today, 2000, 59, 47-60.	4.4	204
243	Hydrogen assisted catalytic combustion of methane on platinum. Catalysis Today, 2000, 59, 141-150.	4.4	306
244	Three-dimensional modeling with Monte Carlo-probability density function methods and laser diagnostics of the combustion in a two-stroke engine. Proceedings of the Combustion Institute, 2000, 28, 1153-1159.	3.9	17
245	Understanding Homogeneous and Heterogeneous Contributions to the Platinum-Catalyzed Partial Oxidation of Ethane in a Short-Contact-Time Reactor. Journal of Catalysis, 2000, 196, 18-39.	6.2	157
246	Influence of Physical and Chemical Parameters on the Conversion Rate of a Catalytic Converter: A Numerical Simulation Study. , 2000, , .		19
247	Kinetic model of an oxygenâ€free methane conversion on a platinum catalyst. Catalysis Letters, 1999, 61, 15-25.	2.6	33
248	Simulation of Reactive Flow in a Partial Oxidation Reactor with Detailed Gas Phase and Surface Chemistry Models. , 1999, , 368-375.		1
249	Formal treatment of catalytic combustion and catalytic conversion of methane. Catalysis Today, 1998, 46, 155-163.	4.4	29
250	Modeling the partial oxidation of methane in a short-contact-time reactor. AICHE Journal, 1998, 44, 2465-2477.	3.6	221
251	Two-dimensional modeling of partial oxidation of methane on rhodium in a short contact time reactor. Proceedings of the Combustion Institute, 1998, 27, 2283-2291.	0.3	39
252	Simulation of the Non-oxidative Methane Conversion with a Catalytically Active Carbonaceous Overlayer. Studies in Surface Science and Catalysis, 1998, 119, 271-276.	1.5	1

#	Article	IF	CITATIONS
253	Modeling the Partial Oxidation of Methane to Syngas at Millisecond Contact Times. Studies in Surface Science and Catalysis, 1998, 119, 685-692.	1.5	13
254	Experimental investigation and computational modeling of hot filament diamond chemical vapor deposition. Journal of Chemical Physics, 1997, 107, 5918-5928.	3.0	46
255	Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum. Combustion and Flame, 1997, 111, 312-326.	5.2	122
256	Simulation of homoepitaxial growth on the diamond (100) surface using detailed reaction mechanisms. Surface Science, 1996, 352-354, 602-606.	1.9	25
257	Numerical study of apparent activation energies of diamond growth rates in hot filament chemical vapor deposition systems. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 1604-1608.	2.1	10
258	lgnition and Extinction of Hydrogen—Air and Methane—Air Mixtures over Platinum and Palladium. ACS Symposium Series, 1996, , 48-57.	0.5	11
259	Numerical modeling of catalytic ignition. Proceedings of the Combustion Institute, 1996, 26, 1747-1754.	0.3	287
260	Simulation of reactive flow in filamentâ€essisted diamond growth including hydrogen surface chemistry. Journal of Applied Physics, 1996, 79, 7256-7263.	2.5	25
261	Simulation of Heterogeneous Reaction Systems. Springer Series in Chemical Physics, 1996, , 265-278.	0.2	4
262	Simulation and sensitivity analysis of the heterogeneous oxidation of methane on a platinum foil. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1373-1377.	2.1	28
263	Modeling of Nitrogen and Oxygen Recombination on Partial Catalytic Surfaces. Journal of Heat Transfer, 1995, 117, 495-501.	2.1	59
264	Modelling and simulation of heterogeneous oxidation of methane on a platinum foil. Catalysis Today, 1994, 21, 461-470.	4.4	127
265	Turbulence and chaotic dynamics in combustion theory. Acta Astronautica, 1992, 28, 419-424.	3.2	0
266	Three-Dimensional Simulation of the Transient Behavior of a Three-Way Catalytic Converter. , 0, , .		33
267	Impact of the Inlet Flow Distribution on the Light-Off Behavior of a 3-Way Catalytic Converter. , 0, , .		28
268	Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction. , 0, , .		144
269	Effect of NO ₂ on Gas-Phase Reactions in Lean NO _x /NH ₃ /O ₂ /H ₂ O Mixtures at Conditions Relevant for Exhaust Gas Aftertreatment. , 0, , .		2
270	Impact of the Gas Mixture and Aging Conditions on Formaldehyde Conversion over a Series of Commercial Pt-Based Catalysts. , 0, , .		3