
Ernesto J Podesta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2017126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial Fusion Is Essential for Steroid Biosynthesis. PLoS ONE, 2012, 7, e45829.	2.5	116
2	A Mitochondrial Kinase Complex Is Essential to Mediate an ERK1/2-Dependent Phosphorylation of a Key Regulatory Protein in Steroid Biosynthesis. PLoS ONE, 2008, 3, e1443.	2.5	108
3	Functional Interaction between Acyl-CoA Synthetase 4, Lipooxygenases and Cyclooxygenase-2 in the Aggressive Phenotype of Breast Cancer Cells. PLoS ONE, 2010, 5, e15540.	2.5	84
4	Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis. FEBS Journal, 2005, 272, 1804-1814.	4.7	72
5	Mitochondrial Fusion and ERK Activity Regulate Steroidogenic Acute Regulatory Protein Localization in Mitochondria. PLoS ONE, 2014, 9, e100387.	2.5	66
6	The Functional Interaction between Acyl-CoA Synthetase 4, 5-Lipooxygenase and Cyclooxygenase-2 Controls Tumor Growth: A Novel Therapeutic Target. PLoS ONE, 2012, 7, e40794.	2.5	51
7	An arachidonic acid-preferring acyl-CoA synthetase is a hormone-dependent and obligatory protein in the signal transduction pathway of steroidogenic hormones. Journal of Molecular Endocrinology, 2005, 34, 655-666.	2.5	47
8	The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Molecular and Cellular Endocrinology, 2015, 408, 73-79.	3.2	47
9	cAMP increases mitochondrial cholesterol transport through the induction of arachidonic acid release inside this organelle in Leydig cells. FEBS Journal, 2006, 273, 5011-5021.	4.7	45
10	Acyl-CoA synthetase-4, a new regulator of mTOR and a potential therapeutic target for enhanced estrogen receptor function in receptor-positive and -negative breast cancer. Oncotarget, 2015, 6, 42632-42650.	1.8	45
11	Involvement of arachidonic acid and the lipoxygenase pathway in mediating luteinizing hormone-induced testosterone synthesis in rat leydig cells. Endocrine Research, 1997, 23, 15-26.	1.2	41
12	Tyrosine phosphatase SHP2 regulates the expression of acyl-CoA synthetase ACSL4. Journal of Lipid Research, 2011, 52, 1936-1948.	4.2	41
13	MAPK Phosphatase-1 (MKP-1) Expression Is Up-Regulated by hCG/cAMP and Modulates Steroidogenesis in MA-10 Leydig Cells. Endocrinology, 2011, 152, 2665-2677.	2.8	39
14	Concerted regulation of free arachidonic acid and hormone-induced steroid synthesis by acyl-CoA thioesterases and acyl-CoA synthetases in adrenal cells. FEBS Journal, 2002, 269, 5599-5607.	0.2	38
15	An adrenocorticotropin-regulated phosphoprotein intermediary in steroid synthesis is similar to an acyl-CoA thioesterase enzyme. FEBS Journal, 1998, 256, 60-66.	0.2	37
16	New inhibitor targeting Acyl-CoA synthetase 4 reduces breast and prostate tumor growth, therapeutic resistance and steroidogenesis. Cellular and Molecular Life Sciences, 2021, 78, 2893-2910.	5.4	31
17	The novel desmopressin analogue [V4Q5]dDAVP inhibits angiogenesis, tumour growth and metastases in vasopressin type 2 receptor-expressing breast cancer models. International Journal of Oncology, 2015, 46, 2335-2345.	3.3	28
18	An arachidonic acid generation/export system involved in the regulation of cholesterol transport in mitochondria of steroidogenic cells. FEBS Letters, 2007, 581, 4023-4028.	2.8	27

Ernesto J Podesta

#	Article	IF	CITATIONS
19	The spatial and temporal regulation of the hormonal signal. Role of mitochondria in the formation of a protein complex required for the activation of cholesterol transport and steroids synthesis. Molecular and Cellular Endocrinology, 2013, 371, 26-33.	3.2	27
20	Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function. Frontiers in Endocrinology, 2016, 7, 60.	3.5	27
21	Adrenocorticotropin Induces Mitogen-Activated Protein Kinase Phosphatase 1 in Y1 Mouse Adrenocortical Tumor Cells. Endocrinology, 2003, 144, 1399-1406.	2.8	26
22	Purification of a Novel 43-kDa Protein (p43) Intermediary in the Activation of Steroidogenesis from Rat Adrenal Gland. FEBS Journal, 1994, 224, 709-716.	0.2	24
23	Corticotropin increases protein tyrosine phosphatase activity by a cAMP-dependent mechanism in rat adrenal gland. FEBS Journal, 2008, 265, 911-918.	0.2	23
24	Regulatory mechanisms leading to differential Acyl-CoA synthetase 4 expression in breast cancer cells. Scientific Reports, 2019, 9, 10324.	3.3	19
25	Protein tyrosine phosphatases regulate arachidonic acid release, StAR induction and steroidogenesis acting on a hormone-dependent arachidonic acid-preferring acyl-CoA synthetase. Journal of Steroid Biochemistry and Molecular Biology, 2006, 99, 197-202.	2.5	18
26	An Acth-Activated Protein Tyrosine Phosphatase (PTP) is Modulated by Pka-Mediated Phosphorylation. Endocrine Research, 2000, 26, 609-614.	1.2	17
27	Hormone-Dependent Expression of a Steroidogenic Acute Regulatory Protein Natural Antisense Transcript in MA-10 Mouse Tumor Leydig Cells. PLoS ONE, 2011, 6, e22822.	2.5	16
28	Tyrosine phosphatases in steroidogenic cells: Regulation and function. Molecular and Cellular Endocrinology, 2007, 265-266, 131-137.	3.2	15
29	Site of action of proteinases in the activation of steroidogenesis in rat adrenal gland. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1310, 260-268.	4.1	9
30	A novel arachidonic acid-related thioesterase involved in acute steroidogenesis. Endocrine Research, 1998, 24, 363-371.	1.2	6
31	Characterization of the cDNA corresponding to a phosphofrotein (p43) intermediary in the action of acth Endocrine Research, 1996, 22, 521-532.	1.2	4
32	Phosphotyrosine protein phosphatases activation by acth in rat adrenal gland. Endocrine Research, 1998, 24, 381-386.	1.2	4
33	cytosolic and mttochondrial proteins as possible targets of cycloheximide effect on adrenal steroidogenesis Endocrine Research, 1996, 22, 533-539.	1.2	3