Andre Terzic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2016975/publications.pdf

Version: 2024-02-01

360 papers	21,090 citations	78 h-index	1	130 g-index
366 all docs	366 docs citations	366 times ranked		19715 citing authors

#	Article	IF	CITATIONS
1	Somatic Oxidative Bioenergetics Transitions into Pluripotency-Dependent Glycolysis to Facilitate Nuclear Reprogramming. Cell Metabolism, 2011, 14, 264-271.	16.2	866
2	Metabolic Plasticity in Stem Cell Homeostasis and Differentiation. Cell Stem Cell, 2012, 11, 596-606.	11.1	561
3	Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Human Molecular Genetics, 2006, 15, 2185-2191.	2.9	446
4	Repair of Acute Myocardial Infarction by Human Stemness Factors Induced Pluripotent Stem Cells. Circulation, 2009, 120, 408-416.	1.6	444
5	Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 2002, 16, 1558-1566.	0.5	442
6	Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S60-S67.	3.3	438
7	Phosphotransfer networks and cellular energetics. Journal of Experimental Biology, 2003, 206, 2039-2047.	1.7	432
8	Cardiopoietic Stem Cell Therapy in Heart Failure. Journal of the American College of Cardiology, 2013, 61, 2329-2338.	2.8	427
9	ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nature Genetics, 2004, 36, 382-387.	21.4	342
10	Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing. International Journal of Molecular Sciences, 2009, 10, 1729-1772.	4.1	342
11	Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. Journal of the American College of Cardiology, 1999, 33, 119-124.	2.8	324
12	ATP-sensitive K+channel openers prevent Ca2+overload in rat cardiac mitochondria. Journal of Physiology, 1999, 519, 347-360.	2.9	323
13	Kir6.2 is required for adaptation to stress. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13278-13283.	7.1	279
14	Cell therapy for cardiac repair—lessons from clinical trials. Nature Reviews Cardiology, 2014, 11, 232-246.	13.7	261
15	Guided Cardiopoiesis Enhances Therapeutic Benefit of Bone Marrow Human Mesenchymal Stem Cells in Chronic Myocardial Infarction. Journal of the American College of Cardiology, 2010, 56, 721-734.	2.8	247
16	Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 2007, 204, 405-420.	8.5	229
17	Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nature Cell Biology, 2013, 15, 96-102.	10.3	229
18	Stable benefit of embryonic stem cell therapy in myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H471-H479.	3.2	212

#	Article	IF	Citations
19	Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. Journal of Physiology, 2006, 571, 253-273.	2.9	212
20	Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1567-H1576.	3.2	207
21	Platelet Lysate Consisting of a Natural Repair Proteome Supports Human Mesenchymal Stem Cell Proliferation and Chromosomal Stability. Cell Transplantation, 2011, 20, 797-812.	2.5	194
22	Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs. Cell Stem Cell, 2016, 18, 625-636.	11.1	190
23	Adenylate Kinase–Catalyzed Phosphotransfer in the Myocardium. Circulation Research, 1999, 84, 1137-1143.	4.5	189
24	Signaling in Channel/Enzyme Multimers. Neuron, 2001, 31, 233-245.	8.1	183
25	Cardiac K channels in health and disease. Journal of Molecular and Cellular Cardiology, 2005, 38, 937-943.	1.9	179
26	Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation. ACS Applied Materials & Differentiation. ACS Applied Materials & Differentiation. 14677-14690.	8.0	179
27	Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H531-H539.	3.2	177
28	Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature, 2015, 524, 234-238.	27.8	166
29	$1\hat{l}\pm$,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. Journal of Biological Chemistry, 2016, 291, 1514-1528.	3.4	164
30	KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, 110-116.	3.3	159
31	Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2018, 11, e000043.	3.6	159
32	The Sulfonylurea Controversy: More Questions From the Heart 11This study was supported by a Clinician-Investigator Fellowship from General Mills, Rochester, Minnesota; by the American Heart Association, Minnesota Affiliate, Minneapolis; by the Miami Heart Research Institute, Miami, Florida; and by the Bruce and Ruth Appraison College of Control of the Appraison Contr	2.8	150
33	Switzerland Journal of the American College of Cardiology, 1998, 31, 950-956. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. Journal of Molecular and Cellular Cardiology, 2010, 48, 725-734.	1.9	148
34	Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. European Heart Journal, 2017, 38, ehw543.	2.2	148
35	Phosphotransfer reactions in the regulation of ATPâ€sensitive K ⁺ channels. FASEB Journal, 1998, 12, 523-529.	0.5	146
36	Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10156-10161.	7.1	143

3

#	Article	IF	Citations
37	Transformative Impact of Proteomics on Cardiovascular Health and Disease. Circulation, 2015, 132, 852-872.	1.6	140
38	Coupling of Cell Energetics with Membrane Metabolic Sensing. Journal of Biological Chemistry, 2002, 277, 24427-24434.	3.4	134
39	Cardiac Cell Repair Therapy: A Clinical Perspective. Mayo Clinic Proceedings, 2009, 84, 876-892.	3.0	134
40	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	2.2	133
41	ATPase activity of the sulfonylurea receptor: a catalytic function for the KATPchannel complex. FASEB Journal, 2000, 14, 1943-1952.	0.5	131
42	K channel therapeutics at the bedside. Journal of Molecular and Cellular Cardiology, 2005, 39, 99-112.	1.9	125
43	Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mechanisms of Ageing and Development, 2008, 129, 304-312.	4.6	125
44	Induced pluripotent stem cells: developmental biology to regenerative medicine. Nature Reviews Cardiology, 2010, 7, 700-710.	13.7	125
45	Recombinant Cardiac ATP-Sensitive K + Channel Subunits Confer Resistance To Chemical Hypoxia-Reoxygenation Injury. Circulation, 1998, 98, 1548-1555.	1.6	115
46	Chronic Diseases: The Emerging Pandemic. Clinical and Translational Science, 2011, 4, 225-226.	3.1	115
47	ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene. International Journal of Cardiology, 2014, 171, 431-442.	1.7	113
48	Knockout of Kir6.2 negates ischemic preconditioning-induced protection of myocardial energetics. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H2106-H2113.	3.2	112
49	Disease-Causing Mitochondrial Heteroplasmy Segregated Within Induced Pluripotent Stem Cell Clones Derived from a Patient with MELAS. Stem Cells, 2013, 31, 1298-1308.	3.2	112
50	CXCR4+/FLK-1+ Biomarkers Select a Cardiopoietic Lineage from Embryonic Stem Cells. Stem Cells, 2008, 26, 1464-1473.	3.2	105
51	Protection conferred by myocardial ATP-sensitive K+channels in pressure overload-induced congestive heart failure revealed inKCNJ11Kir6.2-null mutant. Journal of Physiology, 2006, 577, 1053-1065.	2.9	102
52	Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS Applied Materials & Enhance Cell 11, 23558-23572.	8.0	101
53	Human KATP channelopathies: diseases of metabolic homeostasis. Pflugers Archiv European Journal of Physiology, 2010, 460, 295-306.	2.8	100
54	Genetics and Genomics for the Prevention and Treatment of Cardiovascular Disease: Update. Circulation, 2013, 128, 2813-2851.	1.6	100

#	Article	IF	Citations
55	iPS Programmed Without c-MYC Yield Proficient Cardiogenesis for Functional Heart Chimerism. Circulation Research, 2009, 105, 648-656.	4.5	99
56	KCNJ11 gene knockout of the Kir6.2 K ATP channel causes maladaptive remodeling and heart failure in hypertension. Human Molecular Genetics, 2006, 15, 2285-2297.	2.9	98
57	Energy metabolism in the acquisition and maintenance of stemness. Seminars in Cell and Developmental Biology, 2016, 52, 68-75.	5.0	97
58	Inositol 1,4,5-Trisphosphate Directs Ca ²⁺ Flow between Mitochondria and the Endoplasmic/Sarcoplasmic Reticulum: A Role in Regulating Cardiac Autonomic Ca ²⁺ Spiking. Molecular Biology of the Cell, 2000, 11, 1845-1858.	2.1	96
59	Increased calcium vulnerability of senescent cardiac mitochondria: protective role for a mitochondrial potassium channel opener. Mechanisms of Ageing and Development, 2001, 122, 1073-1086.	4.6	95
60	Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1048-H1056.	3.2	92
61	Failing energetics in failing hearts. Current Cardiology Reports, 2000, 2, 212-217.	2.9	91
62	Cellular Energetics in the Preconditioned State. Journal of Biological Chemistry, 2001, 276, 44812-44819.	3.4	91
63	Failing atrial myocardium: energetic deficits accompany structural remodeling and electrical instability. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1313-H1320.	3.2	90
64	ATP-Sensitive K+ Channel Knockout Compromises the Metabolic Benefit of Exercise Training, Resulting in Cardiac Deficits. Diabetes, 2004, 53, S169-S175.	0.6	89
65	Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: results from the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHARTâ€1) study. European Journal of Heart Failure, 2017, 19, 1520-1529.	7.1	89
66	Decreased Osteogenic Activity of Mesenchymal Stem Cells in Patients With Corticosteroid-Induced Osteonecrosis of the Femoral Head. Journal of Arthroplasty, 2016, 31, 893-898.	3.1	87
67	Mitochondria in Control of Cell Fate. Circulation Research, 2012, 110, 526-529.	4.5	86
68	Physical Association Between Recombinant Cardiac ATP-sensitive K+Channel Subunits Kir6.2 and SUR2A. Journal of Molecular and Cellular Cardiology, 1999, 31, 425-434.	1.9	85
69	Cellular remodeling in heart failure disrupts KATP channel-dependent stress tolerance. EMBO Journal, 2003, 22, 1732-1742.	7.8	85
70	Microtubule destabilization and nuclear entry are sequential steps leading to toxicity in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12171-12176.	7.1	85
71	ATP-sensitive K channel channel/enzyme multimer: Metabolic gating in the heart. Journal of Molecular and Cellular Cardiology, 2005, 38, 895-905.	1.9	85
72	Potassium channel openers prevent potassium-induced calcium loading of cardiac cells: Possible implications in cardioplegia. Journal of Thoracic and Cardiovascular Surgery, 1996, 112, 820-831.	0.8	84

#	Article	IF	Citations
73	Nucleotide-gated KATPchannels integrated with creatine and adenylate kinases: Amplification, tuning and sensing of energetic signals in the compartmentalized cellular environment. Molecular and Cellular Biochemistry, 2004, 256, 243-256.	3.1	83
74	Energy metabolism plasticity enables stemness programs. Annals of the New York Academy of Sciences, 2012, 1254, 82-89.	3.8	83
75	G proteins activate ATP-sensitive K+ channels by antagonizing ATP-dependent gating. Neuron, 1994, 12, 885-893.	8.1	82
76	Potassium channel openers are uncoupling protonophores: implication in cardioprotection. FEBS Letters, 2004, 568, 167-170.	2.8	82
77	Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency. Aging, 2012, 4, 60-73.	3.1	81
78	Evidence for Direct Physical Association between a K ⁺ Channel (Kir6.2) and an ATP-Binding Cassette Protein (SUR1) Which Affects Cellular Distribution and Kinetic Behavior of an ATP-Sensitive K ⁺ Channel. Molecular and Cellular Biology, 1998, 18, 1652-1659.	2.3	79
79	Guided stem cell cardiopoiesis: Discovery and translation. Journal of Molecular and Cellular Cardiology, 2008, 45, 523-529.	1.9	79
80	Stem Cell Platforms for Regenerative Medicine. Clinical and Translational Science, 2009, 2, 222-227.	3.1	79
81	Diazoxide protects mitochondria from anoxic injury: Implications for myopreservation. Journal of Thoracic and Cardiovascular Surgery, 2001, 121, 298-306.	0.8	78
82	Aging and cardioprotection. Journal of Applied Physiology, 2007, 103, 2120-2128.	2.5	78
83	Channelopathies of inwardly rectifying potassium channels. FASEB Journal, 1999, 13, 1901-1910.	0.5	77
84	Tandem Function of Nucleotide Binding Domains Confers Competence to Sulfonylurea Receptor in Gating ATP-sensitive K+ Channels. Journal of Biological Chemistry, 2002, 277, 14206-14210.	3.4	77
85	Congestive Heart Failure Cardiopoietic Regenerative Therapy (<scp>CHART</scp> â€1) trial design. European Journal of Heart Failure, 2016, 18, 160-168.	7.1	77
86	Compromised Energetics in the Adenylate Kinase AK1Gene Knockout Heart under Metabolic Stress. Journal of Biological Chemistry, 2000, 275, 41424-41429.	3.4	75
87	Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction. Journal of Molecular and Cellular Cardiology, 2014, 74, 13-21.	1.9	73
88	Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomaterials Science, 2018, 6, 2375-2385.	5.4	73
89	Gene knockout of the KCNJ8â€encoded Kir6.1 K ATP channel imparts fatal susceptibility to endotoxemia. FASEB Journal, 2006, 20, 2271-2280.	0.5	71
90	Embryonic Stem Cell Therapy of Heart Failure in Genetic Cardiomyopathy. Stem Cells, 2008, 26, 2644-2653.	3.2	71

#	Article	IF	Citations
91	Strategies for Therapeutic Repair: The "R ³ ―Regenerative Medicine Paradigm. Clinical and Translational Science, 2008, 1, 168-171.	3.1	71
92	Suppression of human tumor cell proliferation through mitochondrial targeting. FASEB Journal, 2002, 16, 1010-1016.	0.5	70
93	Dualistic behavior of ATP-sensitive K+ channels toward intracellular nucleoside diphosphates. Neuron, 1994, 12, 1049-1058.	8.1	69
94	Ligand-insensitive State of Cardiac ATP-sensitive K+ Channels. Journal of General Physiology, 1998, 111, 381-394.	1.9	69
95	3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization. Acta Biomaterialia, 2020, 111, 129-140.	8.3	69
96	Genetic Disruption of Kir6.2, the Pore-Forming Subunit of ATP-Sensitive K+ Channel, Predisposes to Catecholamine-Induced Ventricular Dysrhythmia. Diabetes, 2004, 53, S165-S168.	0.6	68
97	Cardioinductive Network Guiding Stem Cell Differentiation Revealed by Proteomic Cartography of Tumor Necrosis Factor α-Primed Endodermal Secretome. Stem Cells, 2008, 26, 387-400.	3.2	68
98	Derivation of a cardiopoietic population from human mesenchymal stem cells yields cardiac progeny. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, S78-S82.	3.3	67
99	Genomic chart guiding embryonic stem cell cardiopoiesis. Genome Biology, 2008, 9, R6.	9.6	66
100	Progenitor Cell Therapy in a Porcine Acute Myocardial Infarction Model Induces Cardiac Hypertrophy, Mediated by Paracrine Secretion of Cardiotrophic Factors Including $TGF\hat{l}^21$. Stem Cells and Development, 2008, 17, 941-952.	2.1	66
101	CELLTOP Clinical Trial: First Report From a Phase 1 Trial of Autologous Adipose Tissue–Derived Mesenchymal Stem Cells in the Treatment of Paralysis Due to Traumatic Spinal Cord Injury. Mayo Clinic Proceedings, 2020, 95, 406-414.	3.0	66
102	Low concentrations of $17\hat{l}^2$ -estradiol protect single cardiac cells against metabolic stress-induced Ca2+ loading. Journal of the American College of Cardiology, 2000, 36, 948-952.	2.8	64
103	Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice. Molecular and Cellular Biochemistry, 2004, 256, 13-27.	3.1	64
104	Covalent crosslinking of graphene oxide and carbon nanotube into hydrogels enhances nerve cell responses. Journal of Materials Chemistry B, 2016, 4, 6930-6941.	5.8	63
105	Gene delivery of Kir6.2/SUR2A in conjunction with pinacidil handles intracellular Ca 2+ homeostasis under metabolic stress. FASEB Journal, 1999, 13, 923-929.	0.5	62
106	Structural Adaptation of the Nuclear Pore Complex in Stem Cell–Derived Cardiomyocytes. Circulation Research, 2003, 92, 444-452.	4.5	62
107	Stem cell therapy for heart failure: Ensuring regenerative proficiency. Trends in Cardiovascular Medicine, 2016, 26, 395-404.	4.9	62
108	c-MYC-Independent Nuclear Reprogramming Favors Cardiogenic Potential of Induced Pluripotent Stem Cells. Journal of Cardiovascular Translational Research, 2010, 3, 13-23.	2.4	61

#	Article	IF	CITATIONS
109	Sarcolemmal ATP-Sensitive K+ Channels Control Energy Expenditure Determining Body Weight. Cell Metabolism, 2010, 11, 58-69.	16.2	61
110	TGF- \hat{l}^2 loaded exosome enhances ischemic wound healing <i>in vitro</i> and <i>in vivo</i> . Theranostics, 2021, 11, 6616-6631.	10.0	61
111	Clinical and Translational Science: From Benchâ€Bedside to Global Village. Clinical and Translational Science, 2010, 3, 254-257.	3.1	60
112	Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. Nature Communications, 2019, 10, 1929.	12.8	60
113	Impaired Intracellular Energetic Communication in Muscles from Creatine Kinase and Adenylate Kinase (M-CK/AK1) Double Knock-out Mice. Journal of Biological Chemistry, 2003, 278, 30441-30449.	3.4	59
114	Reversal of the ATP-liganded State of ATP-sensitive K+ Channels by Adenylate Kinase Activity. Journal of Biological Chemistry, 1996, 271, 31903-31908.	3.4	58
115	Metabolic determinants of embryonic development and stem cell fate. Reproduction, Fertility and Development, 2015, 27, 82.	0.4	58
116	Developmental Enhancement of Adenylate Kinase-AMPK Metabolic Signaling Axis Supports Stem Cell Cardiac Differentiation. PLoS ONE, 2011, 6, e19300.	2.5	56
117	Transgenic overexpression of human DMPK accumulates into hypertrophic cardiomyopathy, myotonic myopathy and hypotension traits of myotonic dystrophy. Human Molecular Genetics, 2004, 13, 2505-2518.	2.9	55
118	Cardiac Resynchronization Therapy Induces Adaptive Metabolic Transitions in the Metabolomic Profile of Heart Failure. Journal of Cardiac Failure, 2015, 21, 460-469.	1.7	55
119	Longevity leap: mind the healthspan gap. Npj Regenerative Medicine, 2021, 6, 57.	5.2	55
120	Structural Plasticity of the Cardiac Nuclear Pore Complex in Response to Regulators of Nuclear Import. Circulation Research, 1999, 84, 1292-1301.	4.5	54
121	Stable transfection of UCP1 confers resistance to hypoxia/reoxygenation in a heart-derived cell line. Journal of Molecular and Cellular Cardiology, 2003, 35, 861-865.	1.9	54
122	KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1706-H1713.	3.2	54
123	Metabolic Regulation of Redox Status in Stem Cells. Antioxidants and Redox Signaling, 2014, 21, 1648-1659.	5.4	54
124	Regenerative Medicine Build-Out. Stem Cells Translational Medicine, 2015, 4, 1373-1379.	3.3	54
125	Cardiac cell repair therapy: a clinical perspective. Mayo Clinic Proceedings, 2009, 84, 876-92.	3.0	54
126	Intracellular diadenosine polyphosphates. Biochemical Pharmacology, 1997, 54, 219-225.	4.4	53

#	Article	IF	CITATIONS
127	Stem cells transform into a cardiac phenotype with remodeling of the nuclear transport machinery. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S68-S76.	3.3	53
128	Adenylate kinase AK1 knockout heart: energetics and functional performance under ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H776-H782.	3.2	52
129	Energy metabolism in nuclear reprogramming. Biomarkers in Medicine, 2011, 5, 715-729.	1.4	49
130	Reduced activity of enzymes coupling ATP-generating with ATP-consuming processes in the failing myocardium. Molecular and Cellular Biochemistry, 1999, 201, 33-40.	3.1	48
131	Cardiac Subsarcolemmal and Interfibrillar Mitochondria Display Distinct Responsiveness to Protection by Diazoxide. PLoS ONE, 2012, 7, e44667.	2.5	48
132	Nuclear Reprogramming with c-Myc Potentiates Glycolytic Capacity of Derived Induced Pluripotent Stem Cells. Journal of Cardiovascular Translational Research, 2013, 6, 10-21.	2.4	48
133	Transcriptional atlas of cardiogenesis maps congenital heart disease interactome. Physiological Genomics, 2014, 46, 482-495.	2.3	47
134	Adipose-derived Mesenchymal Stem Cells Are Phenotypically Superior for Regeneration in the Setting of Osteonecrosis of the Femoral Head. Clinical Orthopaedics and Related Research, 2015, 473, 3080-3090.	1.5	47
135	Defective Metabolic Signaling in Adenylate Kinase AK1 Gene Knock-out Hearts Compromises Post-ischemic Coronary Reflow. Journal of Biological Chemistry, 2007, 282, 31366-31372.	3.4	46
136	Regenerative Medicine Primer. Mayo Clinic Proceedings, 2013, 88, 766-775.	3.0	46
137	Adenosine Prevents Hyperkalemia-Induced Calcium Loading in Cardiac Cells: Relevance for Cardioplegia. Annals of Thoracic Surgery, 1997, 63, 153-161.	1.3	45
138	Mitochondria. Circulation Research, 2001, 89, 744-746.	4.5	44
139	Cells as biologics for cardiac repair in ischaemic heart failure. Heart, 2010, 96, 792-800.	2.9	42
140	Optimized Delivery System Achieves Enhanced Endomyocardial Stem Cell Retention. Circulation: Cardiovascular Interventions, 2013, 6, 710-718.	3.9	41
141	Mitochondria in pluripotent stem cells: stemness regulators and disease targets. Current Opinion in Genetics and Development, 2016, 38, 1-7.	3.3	41
142	Diadenosine 5′,5″-P1,P5-pentaphosphate harbors the properties of a signaling molecule in the heart. FEBS Letters, 1998, 423, 314-318.	2.8	40
143	Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31P NMR and 1H NMR spectroscopy. Molecular and Cellular Biochemistry, 2004, 256, 281-289.	3.1	39
144	Adenylate Kinase and Metabolic Signaling in Cancer Cells. Frontiers in Oncology, 2020, 10, 660.	2.8	39

#	Article	IF	Citations
145	Compartmentation of membrane processes and nucleotide dynamics in diffusion-restricted cardiac cell microenvironment. Journal of Molecular and Cellular Cardiology, 2012, 52, 401-409.	1.9	38
146	Regulation of Nitric Oxide-Responsive Recombinant Soluble Guanylyl Cyclase by Calcium. Biochemistry, 1999, 38, 6441-6448.	2.5	37
147	Developmental Restructuring of the Creatine Kinase System Integrates Mitochondrial Energetics with Stem Cell Cardiogenesis. Annals of the New York Academy of Sciences, 2008, 1147, 254-263.	3.8	37
148	Induced pluripotent stem cell intervention rescues ventricular wall motion disparity, achieving biological cardiac resynchronization postâ€infarction. Journal of Physiology, 2013, 591, 4335-4349.	2.9	37
149	Proteomic profiling of K _{ATP} channelâ€deficient hypertensive heart maps risk for maladaptive cardiomyopathic outcome. Proteomics, 2009, 9, 1314-1325.	2.2	36
150	Apoptotic Susceptibility to DNA Damage of Pluripotent Stem Cells Facilitates Pharmacologic Purging of Teratoma Risk. Stem Cells Translational Medicine, 2012, 1, 709-718.	3.3	36
151	Lipid Metabolism Greases the Stem Cell Engine. Cell Metabolism, 2013, 17, 153-155.	16.2	35
152	Regenerative heart failure therapy headed for optimization. European Heart Journal, 2014, 35, 1231-1234.	2.2	35
153	Dual effect of glyburide, an antagonist of KATP channels, on metabolic inhibition-induced Ca2+ loading in cardiomyocytes. European Journal of Pharmacology, 1996, 308, 343-349.	3.5	34
154	Administration of Allogenic Stem Cells Dosed to Secure Cardiogenesis and Sustained Infarct Repair. Annals of the New York Academy of Sciences, 2005, 1049, 189-198.	3.8	34
155	Dynamic phosphometabolomic profiling of human tissues and transgenic models by sup > 18 < /sup > O-assisted < sup > 31 < /sup > P NMR and mass spectrometry. Physiological Genomics, 2012, 44, 386-402.	2.3	34
156	ATP-Sensitive K ⁺ Channel Knockout Induces Cardiac Proteome Remodeling Predictive of Heart Disease Susceptibility. Journal of Proteome Research, 2009, 8, 4823-4834.	3.7	33
157	Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. Journal of Biomedical Materials Research - Part A, 2021, 109, 193-206.	4.0	33
158	Restoration of Ca2+-inhibited oxidative phosphorylation in cardiac mitochondria by mitochondrial Ca2+ unloading. Molecular and Cellular Biochemistry, 2001, 220, 135-140.	3.1	32
159	Deletion of mtDNA disrupts mitochondrial function and structure, but not biogenesis. Mitochondrion, 2003, 3, 13-19.	3.4	32
160	Induced Pluripotent Reprogramming from Promiscuous Human Stemnessâ€Related Factors. Clinical and Translational Science, 2009, 2, 118-126.	3.1	32
161	Operative Condition–Dependent Response of Cardiac ATP-Sensitive K + Channels Toward Sulfonylureas. Circulation Research, 1998, 82, 272-278.	4.5	31
162	Reciprocal regulation of expression of pore-forming KATP channel genes by hypoxia. Molecular and Cellular Biochemistry, 2001, 225, 145-150.	3.1	31

#	Article	IF	Citations
163	Directed Inhibition of Nuclear Import in Cellular Hypertrophy. Journal of Biological Chemistry, 2001, 276, 20566-20571.	3.4	31
164	Metabolome and metaboproteome remodeling in nuclear reprogramming. Cell Cycle, 2013, 12, 2355-2365.	2.6	31
165	Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration. Stem Cells Translational Medicine, 2016, 5, 694-702.	3.3	31
166	Interaction of Asymmetric ABCC9-Encoded Nucleotide Binding Domains Determines KATP Channel SUR2A Catalytic Activity. Journal of Proteome Research, 2008, 7, 1721-1728.	3.7	30
167	KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response. Human Genetics, 2009, 126, 779-789.	3.8	29
168	Human umbilical cord blood-derived mononuclear cells improve murine ventricular function upon intramyocardial delivery in right ventricular chronic pressure overload. Stem Cell Research and Therapy, 2015, 6, 50.	5 . 5	29
169	Regenerative medicine curriculum for next-generation physicians. Npj Regenerative Medicine, 2019, 4, 3.	5.2	29
170	Patient-specific genomics and cross-species functional analysis implicate LRP2 in hypoplastic left heart syndrome. ELife, 2020, 9, .	6.0	29
171	KATP channel polymorphism is associated with left ventricular size in hypertensive individuals: a large-scale community-based study. Human Genetics, 2008, 123, 665-667.	3.8	28
172	Two structurally distinct and spatially compartmentalized adenylate kinases are expressed from the AK1 gene in mouse brain. Molecular and Cellular Biochemistry, 2004, 256, 59-72.	3.1	27
173	Regenerative Medicine Blueprint. Stem Cells and Development, 2013, 22, 20-24.	2.1	27
174	Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation. Stem Cells, 2015, 33, 1021-1035.	3.2	26
175	The murine dialysis fistula model exhibits a senescence phenotype: pathobiological mechanisms and therapeutic potential. American Journal of Physiology - Renal Physiology, 2018, 315, F1493-F1499.	2.7	26
176	Health Care Evolves From Reactive to Proactive. Clinical Pharmacology and Therapeutics, 2019, 105, 10-13.	4.7	26
177	18O-assisted dynamic metabolomics for individualized diagnostics and treatment of human diseases. Croatian Medical Journal, 2012, 53, 529-534.	0.7	26
178	Stem Cell Transplant into Preimplantation Embryo Yields Myocardial Infarction-Resistant Adult Phenotype. Stem Cells, 2009, 27, 1697-1705.	3.2	25
179	Lineage specification of Flk- $1+$ progenitors is associated with divergent Sox7 expression in cardiopolesis. Differentiation, 2009, 77, 248-255.	1.9	25
180	Spot14/Mig12 heterocomplex sequesters polymerization and restrains catalytic function of human acetylâ€CoA carboxylase 2. Journal of Molecular Recognition, 2013, 26, 679-688.	2.1	25

#	Article	IF	CITATIONS
181	Regeneration for All: An Odyssey in Biotherapy. European Heart Journal, 2019, 40, 1033-1035.	2.2	25
182	Nuclear Reprogramming Strategy Modulates Differentiation Potential of Induced Pluripotent Stem Cells. Journal of Cardiovascular Translational Research, 2011, 4, 131-137.	2.4	24
183	Systems Proteomics for Translational Network Medicine. Circulation: Cardiovascular Genetics, 2012, 5, 478-478.	5.1	24
184	Interruption of transmembrane signaling as a novel antisecretory strategy to treat enterotoxigenic diarrhea. FASEB Journal, 1999, 13, 913-922.	0.5	24
185	Adenosine Prevents K-Induced Ca2 Loading: Insight Into Cardioprotection During Cardioplegia. Annals of Thoracic Surgery, 1998, 65, 586-591.	1.3	23
186	Potassium channel openers: therapeutic potential in cardiology and medicine. Expert Opinion on Pharmacotherapy, 2001, 2, 1995-2010.	1.8	23
187	KATP channel-dependent metaboproteome decoded: systems approaches to heart failure prediction, diagnosis, and therapy. Cardiovascular Research, 2011, 90, 258-266.	3.8	23
188	Inhibition of DNA Topoisomerase II Selectively Reduces the Threat of Tumorigenicity Following Induced Pluripotent Stem Cell-Based Myocardial Therapy. Stem Cells and Development, 2014, 23, 2274-2282.	2.1	23
189	Store-operated Ca2+ entry supports contractile function in hearts of hibernators. PLoS ONE, 2017, 12, e0177469.	2.5	23
190	Cardiopoietic stem cell therapy in ischaemic heart failure: longâ€ŧerm clinical outcomes. ESC Heart Failure, 2020, 7, 3345-3354.	3.1	23
191	Effective Pharmacotherapy Against Oxidative Injury: Alternative Utility of an ATP-Sensitive Potassium Channel Opener. Journal of Cardiovascular Pharmacology, 2007, 50, 411-418.	1.9	22
192	Concise Review: Pluripotent Stem Cell-Based Regenerative Applications for Failing $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Cell Function. Stem Cells Translational Medicine, 2014, 3, 653-661.	3.3	22
193	Safety and Feasibility for Pediatric Cardiac Regeneration Using Epicardial Delivery of Autologous Umbilical Cord Blood-Derived Mononuclear Cells Established in a Porcine Model System. Stem Cells Translational Medicine, 2015, 4, 195-206.	3.3	22
194	Strontiumâ€substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds. Journal of Biomedical Materials Research - Part A, 2019, 107, 631-642.	4.0	22
195	Mitochondrial KATPChannels: Probing Molecular Identity and Pharmacology. Journal of Molecular and Cellular Cardiology, 2000, 32, 1911-1915.	1.9	21
196	Role for SUR2A ED Domain in Allosteric Coupling within the KATP Channel Complex. Journal of General Physiology, 2008, 131, 185-196.	1.9	21
197	Induced pluripotent stem cells: advances to applications. Stem Cells and Cloning: Advances and Applications, 2010, 3, 29.	2.3	21
198	Regional and systemic hemodynamic responses following the creation of a murine arteriovenous fistula. American Journal of Physiology - Renal Physiology, 2011, 301, F845-F851.	2.7	21

#	Article	IF	Citations
199	Fetoscopic Therapy for Severe Pulmonary Hypoplasia in Congenital Diaphragmatic Hernia: A First in Prenatal Regenerative Medicine at Mayo Clinic. Mayo Clinic Proceedings, 2018, 93, 693-700.	3.0	21
200	Cardiopoietic stem cell therapy restores infarction-altered cardiac proteome. Npj Regenerative Medicine, 2020, 5, 5.	5.2	21
201	Scaffold-Free Spheroids with Two-Dimensional Heteronano-Layers (2DHNL) Enabling Stem Cell and Osteogenic Factor Codelivery for Bone Repair. ACS Nano, 2022, 16, 2741-2755.	14.6	21
202	Protective action of $17\hat{l}^2$ -estradiol in cardiac cells: implications for hyperkalemic cardioplegia. Annals of Thoracic Surgery, 1998, 66, 1658-1661.	1.3	20
203	SDF-1-Enhanced Cardiogenesis Requires CXCR4 Induction in Pluripotent Stem Cells. Journal of Cardiovascular Translational Research, 2010, 3, 674-682.	2.4	20
204	Translational medicine: path to personalized and public health. Biomarkers in Medicine, 2010, 4, 787-790.	1.4	20
205	Cardiogenic Induction of Pluripotent Stem Cells Streamlined Through a Conserved SDF-1/VEGF/BMP2 Integrated Network. PLoS ONE, 2010, 5, e9943.	2.5	20
206	Cardioprotective repair through stem cell-based cardiopoiesis. Journal of Applied Physiology, 2007, 103, 1438-1440.	2.5	19
207	Decoded Calreticulin-Deficient Embryonic Stem Cell Transcriptome Resolves Latent Cardiophenotype. Stem Cells, 2010, 28, 1281-1291.	3.2	19
208	ATP-Sensitive K+ Channel-Deficient Dilated Cardiomyopathy Proteome Remodeled by Embryonic Stem Cell Therapy Â. Stem Cells, 2010, 28, 1355-1367.	3.2	19
209	Quaternary structure of KATP channel SUR2A nucleotide binding domains resolved by synchrotron radiation X-ray scattering. Journal of Structural Biology, 2010, 169, 243-251.	2.8	19
210	Clinical Experience With Regenerative Therapy in Heart Failure. Circulation Research, 2018, 122, 1344-1346.	4.5	19
211	Bioenergetic protection of failing atrial and ventricular myocardium by vasopeptidase inhibitor omapatrilat. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1686-H1692.	3.2	18
212	Regenerative Medicine: On the Vanguard of Health Care. Mayo Clinic Proceedings, 2011, 86, 600-602.	3.0	18
213	Regenerative Therapy Prevents Heart Failure Progression in Dyssynchronous Nonischemic Narrow QRS Cardiomyopathy. Journal of the American Heart Association, 2015, 4, .	3.7	18
214	M ³ RNA Drives Targeted Gene Delivery in Acute Myocardial Infarction. Tissue Engineering - Part A, 2019, 25, 145-158.	3.1	18
215	Injectable catalyst-free "click―organic-inorganic nanohybrid (click-ON) cement for minimally invasive in vivo bone repair. Biomaterials, 2021, 276, 121014.	11.4	18
216	Diadenosine polyphosphate-induced inhibition of cardiac KATP channels: Operative state-dependent regulation by a nucleoside diphosphate. Pflugers Archiv European Journal of Physiology, 1996, 431, 800-802.	2.8	17

#	Article	IF	CITATIONS
217	Cardiac ATP-sensitive K+ channel: a target for diadenosine 5?,5?-P1,P5-pentaphosphate. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 353, 241-4.	3.0	17
218	Integration of Adenylate Kinase and Glycolytic and Glycogenolytic Circuits in Cellular Energetics. , 0, , 265-301.		17
219	KCNJ11 knockout morula re-engineered by stem cell diploid aggregation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 269-276.	4.0	17
220	Reply. Journal of the American College of Cardiology, 2013, 62, 2454-2456.	2.8	17
221	Mechanical Dyssynchrony Precedes QRS Widening in ATPâ€Sensitive K ⁺ Channel–Deficient Dilated Cardiomyopathy. Journal of the American Heart Association, 2013, 2, e000410.	3.7	17
222	Natural Cardiogenesis-Based Template Predicts Cardiogenic Potential of Induced Pluripotent Stem Cell Lines. Circulation: Cardiovascular Genetics, 2013, 6, 462-471.	5.1	17
223	Diadenosine tetraphosphateâ€induced inhibition of ATPâ€sensitive K ⁺ channels in patches excised from ventricular myocytes. British Journal of Pharmacology, 1996, 117, 233-235.	5.4	16
224	Cytosolic Ca2+ domain-dependent protective action of adenosine in cardiomyocytes. European Journal of Pharmacology, 1996, 298, 63-69.	3.5	16
225	New frontiers of cardioprotection. Clinical Pharmacology and Therapeutics, 1999, 66, 105-109.	4.7	16
226	Endpoints in stem cell trials in ischemic heart failure. Stem Cell Research and Therapy, 2015, 6, 159.	5.5	16
227	Blastocyst Injection of Embryonic Stem Cells: A Simple Approach to Unveil Mechanisms of Corrections in Mouse Models of Human Disease. Stem Cell Reviews and Reports, 2009, 5, 369-377.	5.6	15
228	Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium. PLoS ONE, 2015, 10, e0136556.	2.5	15
229	Stem Cells Versus Senescence. Journal of the American College of Cardiology, 2015, 65, 148-150.	2.8	15
230	Cardiopoietic index predicts heart repair fitness of patient-derived stem cells. Biomarkers in Medicine, 2015, 9, 639-649.	1.4	15
231	Deleterious mtDNA mutations are common in mature oocytes. Biology of Reproduction, 2020, 102, 607-619.	2.7	15
232	Ventricular remodeling in ischemic heart failure stratifies responders to stem cell therapy. Stem Cells Translational Medicine, 2020, 9, 74-79.	3.3	15
233	Do NHE inhibition and ischemic preconditioning convey cardioprotection through a common mechanism?. Basic Research in Cardiology, 2001, 96, 318-324.	5.9	14
234	Both systolic and diastolic dysfunction characterize nonischemic inhibition of myocardial energy metabolism: An experimental strain rate echocardiographic study. Journal of the American Society of Echocardiography, 2004, 17, 1239-1244.	2.8	14

#	Article	IF	CITATIONS
235	Mesenchymal Stem Cells and Cardiac Repair: Principles and Practice. Journal of Cardiovascular Translational Research, 2008, 1, 115-119.	2.4	14
236	Translational Medicine in the Era of Health Care Reform. Clinical and Translational Science, 2009, 2, 96-97.	3.1	14
237	Channelopathies: Decoding Disease Pathogenesis. Science Translational Medicine, 2010, 2, 42ps37.	12.4	14
238	Translating stem cell research to the clinic: a primer on translational considerations for your first stem cell protocol. Stem Cell Research and Therapy, 2015, 6, 146.	5.5	14
239	[89Zr]Zr-DBN labeled cardiopoietic stem cells proficient for heart failure. Nuclear Medicine and Biology, 2020, 90-91, 23-30.	0.6	14
240	Robotic-Assisted DIEP Flap Harvest for Autologous Breast Reconstruction: A Comparative Feasibility Study on a Cadaveric Model. Journal of Reconstructive Microsurgery, 2020, 36, 362-368.	1.8	14
241	Electron spray ionization mass spectrometry and 2D 31P NMR for monitoring 180/160 isotope exchange and turnover rates of metabolic oligophosphates. Analytical and Bioanalytical Chemistry, 2012, 403, 697-706.	3.7	13
242	Building the regenerative medicine workforce of the future: an educational imperative. Regenerative Medicine, 2019, 14, 613-615.	1.7	13
243	Gastroepiploic vascularized lymph node transfer for the treatment of extremity lymphedema: comparison between middle and distal inset. Gland Surgery, 2020, 9, 528-538.	1.1	13
244	Regenerative medicine clinical readiness. Regenerative Medicine, 2021, 16, 309-322.	1.7	13
245	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	4.1	13
246	Stem Cells: Clinical Trials Results The End of the Beginning or the Beginning of the End?. Cardiovascular & Hematological Disorders Drug Targets, 2010, 10, 186-201.	0.7	13
247	Experimental Therapeutics: A Paradigm for Personalized Medicine. Clinical and Translational Science, 2009, 2, 436-438.	3.1	12
248	<scp>Hot Topic</scp> : Molecular Therapy Drives Patient entric Health Care Paradigms. Clinical and Translational Science, 2010, 3, 170-171.	3.1	12
249	Stem Cell in the Rough. Circulation Research, 2014, 115, 814-816.	4.5	12
250	Companion diagnostics at the intersection of personalized medicine and healthcare delivery. Biomarkers in Medicine, 2015, 9, 1-3.	1.4	12
251	Adenylate kinase AK2 isoform integral in embryo and adult heart homeostasis. Biochemical and Biophysical Research Communications, 2021, 546, 59-64.	2.1	12
252	Sarcolemmal $\hat{l}\pm 2$ -adrenoceptors in feedback control of myocardial response to sympathetic challenge. , 2019, 197, 179-190.		12

#	Article	IF	Citations
253	Clinical pharmacology: a paradigm for individualized medicine. Biomarkers in Medicine, 2009, 3, 679-684.	1.4	11
254	Targeted Disruption of K _{ATP} Channels Aggravates Cardiac Toxicity in Cocaine Abuse. Clinical and Translational Science, 2009, 2, 361-365.	3.1	11
255	K _{ATP} channels process nucleotide signals in muscle thermogenic response. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 506-519.	5.2	11
256	31P NMR correlation maps of $180/160$ chemical shift isotopic effects for phosphometabolite labeling studies. Journal of Biomolecular NMR, 2011, 50, 237-245.	2.8	11
257	Patient-centric clinical pharmacology advances the path to personalized medicine. Biomarkers in Medicine, 2011, 5, 697-700.	1.4	11
258	Clinical development plan for regenerative therapy in heart failure. European Journal of Heart Failure, 2016, 18, 142-144.	7.1	11
259	Calreticulin secures calcium-dependent nuclear pore competency required for cardiogenesis. Journal of Molecular and Cellular Cardiology, 2016, 92, 63-74.	1.9	11
260	Mesenchymal Stem Cells: Engineering Regeneration. Clinical and Translational Science, 2008, 1, 34-35.	3.1	10
261	Clinical Translational Science 2020: Disruptive Innovation Redefines the Discoveryâ€Application Enterprise. Clinical and Translational Science, 2011, 4, 69-71.	3.1	10
262	Advances in Cardiac ATP-Sensitive K + Channelopathies From Molecules to Populations. Circulation: Arrhythmia and Electrophysiology, 2011, 4, 577-585.	4.8	10
263	iPS Cell–Derived Cardiogenicity is Hindered by Sustained Integration of Reprogramming Transgenes. Circulation: Cardiovascular Genetics, 2014, 7, 667-676.	5.1	10
264	Selection Via Pluripotency-Related Transcriptional Screen Minimizes the Influence of Somatic Origin on iPSC Differentiation Propensity. Stem Cells, 2014, 32, 2350-2359.	3.2	10
265	A Graduate-Level Interdisciplinary Curriculum in CAR-T Cell Therapy. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2020, 4, 203-210.	2.4	10
266	Brachial approach to NOGA-guided procedures: electromechanical mapping and transendocardial stem-cell injections. Texas Heart Institute Journal, 2011, 38, 179-82.	0.3	10
267	Inositol 1,4,5-trisphosphate-induced Ca2+ release is regulated by cytosolic Ca2+ in intact skeletal muscle. Pflugers Archiv European Journal of Physiology, 1996, 432, 782-790.	2.8	9
268	Title is missing!. Journal of Muscle Research and Cell Motility, 2003, 24, 271-276.	2.0	9
269	Interactome of a Cardiopoietic Precursor. Journal of Cardiovascular Translational Research, 2008, 1, 120-126.	2.4	9
270	Policies to aid the adoption of personalized medicine. Nature Reviews Drug Discovery, 2014, 13, 159-160.	46.4	9

#	Article	IF	CITATIONS
271	Posology for Regenerative Therapy. Circulation Research, 2017, 121, 1213-1215.	4.5	9
272	Towards regeneration: the evolution of medicine from fighting to building. BMJ: British Medical Journal, 0, , $k1586$.	2.3	9
273	Brachyury engineers cardiac repair competent stem cells. Stem Cells Translational Medicine, 2021, 10, 385-397.	3.3	9
274	Evaluating Patients With Impaired Renal Function During Drug Development: Highlights From the 2019 US FDA Pharmaceutical Science and Clinical Pharmacology Advisory Committee Meeting. Clinical Pharmacology and Therapeutics, 2021, 110, 285-288.	4.7	9
275	Inhibition of Both Na/H and Bicarbonate-Dependent Exchange is Required to Prevent Recovery of Intracellular pH in Single Cardiomyocytes Exposed to Metabolic Stress. Bioscience Reports, 1999, 19, 99-107.	2.4	8
276	Cardioprotection: emerging pharmacotherapy. Expert Opinion on Pharmacotherapy, 2001, 2, 739-752.	1.8	8
277	The Value Proposition of Molecular Medicine. Clinical and Translational Science, 2012, 5, 108-110.	3.1	8
278	CXCR4+ and FLK-1+ Identify Circulating Cells Associated with Improved Cardiac Function in Patients Following Myocardial Infarction. Journal of Cardiovascular Translational Research, 2013, 6, 787-797.	2.4	8
279	Translational medicine individualizes healthcare discovery, development and delivery. Biomarkers in Medicine, 2013, 7, 1-3.	1.4	8
280	Human acetyl-CoA carboxylase 2 expressed in silkworm Bombyx mori exhibits posttranslational biotinylation and phosphorylation. Applied Microbiology and Biotechnology, 2014, 98, 8201-8209.	3.6	8
281	Make regeneration great again; stronger together. European Heart Journal, 2017, 38, 1094-1095.	2.2	8
282	Digital regenerative medicine and surgery pedagogy for virtual learning in the time of COVID-19. Regenerative Medicine, 2020, 15, 1937-1941.	1.7	8
283	Stem cell preservation for regenerative therapies: ethical and governance considerations for the health care sector. Npj Regenerative Medicine, 2020, 5, 23.	5.2	8
284	Black phosphorus incorporation modulates nanocomposite hydrogel properties and subsequent <scp>MC3T3</scp> cell attachment, proliferation, and differentiation. Journal of Biomedical Materials Research - Part A, 2021, 109, 1633-1645.	4.0	8
285	Gas chromatography-mass spectrometry based 18O stable isotope labeling of Krebs cycle intermediates. Analytica Chimica Acta, 2021, 1154, 338325.	5.4	8
286	Molecular Pharmacology of ATP-Sensitive K+Channels: How and Why?., 2001,, 257-277.		8
287	Regenerative outlook: offering global solutions for equitable care. Regenerative Medicine, 2020, 15, 2249-2252.	1.7	8
288	Clinical and Translational Sciences: At the Intersection of Molecular and Individualized Medicine. Clinical and Translational Science, 2008, 1 , 6-8.	3.1	7

#	Article	IF	Citations
289	Stem Cell Lineage Specification: You Become What You Eat. Cell Metabolism, 2014, 20, 389-391.	16.2	7
290	Larger End-Diastolic Volume Associates With Response to Cell Therapy in Patients With Nonischemic Dilated Cardiomyopathy. Mayo Clinic Proceedings, 2020, 95, 2125-2133.	3.0	7
291	In Utero Restoration of Hindbrain Herniation in Fetal Myelomeningocele as Part of Prenatal Regenerative Therapy Program at Mayo Clinic. Mayo Clinic Proceedings, 2020, 95, 738-746.	3.0	7
292	Screening for regenerative therapy responders in heart failure. Biomarkers in Medicine, 2021, 15, 775-783.	1.4	7
293	CardioPulse: Regenerative medicine in the practice of cardiology. European Heart Journal, 2016, 37, 1089-90.	2.2	7
294	System Analysis of Cardiac Energetics–Excitation–Contraction Coupling: Integration of Mitochondrial Respiration, Phosphotransfer Pathways, Metabolic Pacing, and Substrate Supply in the Heart., 0,, 367-405.		6
295	Bioinformatic Primer for Clinical and Translational Science. Clinical and Translational Science, 2008, 1, 174-180.	3.1	6
296	The Roadmap to Personalized Medicine. Clinical and Translational Science, 2008, 1, 93-93.	3.1	6
297	Adenylate Kinase Isoform Network: A Major Hub in Cell Energetics and Metabolic Signaling. Springer Series in Biophysics, 2014, , 145-162.	0.4	6
298	First-in-Human Use of a Retention-Enhanced Catheter for Endomyocardial Cell Delivery. JACC: Cardiovascular Interventions, 2018, 11, 412-414.	2.9	6
299	Regenerative Musculoskeletal Care: Ensuring Practice Implementation. Clinical Pharmacology and Therapeutics, 2018, 103, 50-53.	4.7	6
300	Regenerative medicine lexicon. Regenerative Medicine, 2020, 15, 2325-2328.	1.7	6
301	Regenerative medicine: a reality of stem cell technology. Minnesota Medicine, 2011, 94, 44-7.	0.1	6
302	Sizeâ€dependent osteogenesis of black phosphorus in nanocomposite hydrogel scaffolds. Journal of Biomedical Materials Research - Part A, 2022, 110, 1488-1498.	4.0	6
303	Cardiovascular Profile of E4080 and Its Analogue ER001533: Novel Potassium Channel Openers with Bradycardic Properties. Cardiovascular Drug Reviews, 1993, 11, 223-233.	4.1	5
304	The modulating actions of sulfonylurea on atrial natriuretic peptide release in experimental acute heart failure. European Journal of Heart Failure, 2000, 2, 33-40.	7.1	5
305	Identity and function of cardiac KATP channels. Journal of Molecular and Cellular Cardiology, 2003, 35, 433-435.	1.9	5
306	Acquired and innate cardioprotection. Journal of Applied Physiology, 2007, 103, 1436-1437.	2.5	5

#	Article	IF	CITATIONS
307	Rescue of Developmental Defects by Blastocyst Stem Cell Injection: Towards Elucidation of Neomorphic Corrective Pathways. Journal of Cardiovascular Translational Research, 2010, 3, 66-72.	2.4	5
308	Regenerative Principles Enrich Cardiac Rehabilitation Practice. American Journal of Physical Medicine and Rehabilitation, 2014, 93, S169-S175.	1.4	5
309	Cholesterol-derived glucocorticoids control early fate specification in embryonic stem cells. Stem Cell Research, 2015, 15, 88-95.	0.7	5
310	Induced pluripotent stem cells for cardiovascular disease: from product-focused disease modeling to process-focused disease discovery. Regenerative Medicine, 2015, 10, 773-783.	1.7	5
311	Repetition rescues regenerative reserve. European Heart Journal, 2016, 37, 1667-1670.	2.2	5
312	Process Improvement for Maximized Therapeutic Innovation Outcome. Clinical Pharmacology and Therapeutics, 2018, 103, 8-12.	4.7	5
313	Regenerative Prophylaxis <i>In Utero</i> . Clinical Pharmacology and Therapeutics, 2019, 105, 39-41.	4.7	5
314	Introduction to the Symposium on Regenerative Medicine. Mayo Clinic Proceedings, 2013, 88, 645-646.	3.0	4
315	Systems-Based Technologies in Profiling the Stem Cell Molecular Framework for Cardioregenerative Medicine. Stem Cell Reviews and Reports, 2015, 11, 501-510.	5.6	4
316	The Regenerative Horizon: Opportunities for Nursing Research and Practice. Journal of Nursing Scholarship, 2019, 51, 651-660.	2.4	4
317	Emerging workforce readiness in regenerative healthcare. Regenerative Medicine, 2021, 16, 197-206.	1.7	4
318	SDF-1 $\hat{l}\pm$ /OPF/BP Composites Enhance the Migrating and Osteogenic Abilities of Mesenchymal Stem Cells. Stem Cells International, 2021, 2021, 1-12.	2.5	4
319	Stem cell systems informatics for advanced clinical biodiagnostics: tracing molecular signatures from bench to bedside. Croatian Medical Journal, 2013, 54, 319-329.	0.7	4
320	Zinc-doped hydroxyapatite and poly(propylene fumarate) nanocomposite scaffold for bone tissue engineering. Journal of Materials Science, 2022, 57, 5998-6012.	3.7	4
321	Stable Isotope Tracing Uncovers Reduced \hat{I}^3/\hat{I}^2 -ATP Turnover and Metabolic Flux Through Mitochondrial-Linked Phosphotransfer Circuits in Aggressive Breast Cancer Cells. Frontiers in Oncology, 0, 12, .	2.8	4
322	Emerging therapeutic strategies in myocardial preservation: focus on ATP-sensitive K channels. Expert Opinion on Therapeutic Targets, 1998, 2, 181-193.	1.0	3
323	Sizing Up Pharmacotherapy for Obesity. Clinical and Translational Science, 2010, 3, 123-125.	3.1	3
324	Heart Failure Transcriptome. Circulation: Cardiovascular Genetics, 2011, 4, 469-471.	5.1	3

#	Article	IF	CITATIONS
325	Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy Highlights of the Year in JCTR 2013. Journal of Cardiovascular Translational Research, 2014, 7, 518-525.	2.4	3
326	Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity. Applied Microbiology and Biotechnology, 2015, 99, 8977-8986.	3.6	3
327	Nos3â^'/â^' iPSCs model concordant signatures of in utero cardiac pathogenesis. Journal of Molecular and Cellular Cardiology, 2015, 87, 228-236.	1.9	3
328	Targeted Derivation of Organotypic Glucose- and GLP-1-Responsive \hat{I}^2 Cells Prior to Transplantation into Diabetic Recipients. Stem Cell Reports, 2019, 13, 307-321.	4.8	3
329	Regenerative readiness: innovation meets sociology. Regenerative Medicine, 2021, 16, 189-195.	1.7	3
330	Mass Customized Outlook for Regenerative Heart Failure Care. International Journal of Molecular Sciences, 2021, 22, 11394.	4.1	3
331	The Molecular Therapeutics Section of the American Society for Clinical Pharmacology and Therapeutics. Clinical Pharmacology and Therapeutics, 1999, 66, 336-337.	4.7	2
332	Systems biology surveillance decrypts pathological transcriptome remodeling. BMC Systems Biology, 2015, 9, 36.	3.0	2
333	Proteomic Network Systems Analysis. , 2016, , 321-342.		2
334	Insulin-like peptide 3 expressed in the silkworm possesses intrinsic disulfide bonds and full biological activity. Scientific Reports, 2017, 7, 17339.	3.3	2
335	Conventional and unconventional secretory proteins expressed with silkworm bombyxin signal peptide display functional fidelity. Scientific Reports, 2017, 7, 14499.	3.3	2
336	Secretome signature of cardiopoietic cells echoed in rescued infarcted heart proteome. Stem Cells Translational Medicine, 2021, 10, 1320-1328.	3.3	2
337	Diadenosine Polyphosphate Signaling in the Heart. , 2001, , 693-702.		2
338	Stem Cell Therapy for Ischemic Heart Disease. , 2013, , 449-465.		2
339	Diversity of respiratory parameters and metabolic adaptation to low oxygen tension in mesenchymal stromal cells. Metabolism Open, 2022, 13, 100167.	2.9	2
340	Reparative resynchronization in ischemic heart failure: an emerging strategy. Expert Opinion on Biological Therapy, 2014, 14, 1055-1060.	3.1	1
341	Mapping transcriptome profiles of in vitro iPSC-derived cardiac differentiation to in utero heart development. Genomics Data, 2016, 7, 129-130.	1.3	1
342	Path Toward Proactive Therapy for Patent Ductus Arteriosus. Clinical Pharmacology and Therapeutics, 2019, 106, 1187-1190.	4.7	1

#	Article	IF	CITATIONS
343	Antiarrhythmic Drugs and Future Direction. Contemporary Cardiology, 2003, , 387-404.	0.1	1
344	Transport in Nucleus. , 2001, , 437-446.		1
345	K+ Channel Openers., 2001,, 829-836.		1
346	KATP channel dependent heart multiome atlas. Scientific Reports, 2022, 12, 7314.	3.3	1
347	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2011, , 445-468.		0
348	MicroRNA Signatures as Diagnostic and Therapeutic Targets. Laboratory Medicine Online, 2011, 1, 1.	0.2	0
349	Substrate-Guided Proteomics Enhances Degradome Resolution. Circulation: Cardiovascular Genetics, 2013, 6, 7-9.	5.1	0
350	Translation of regenerative technologies into clinical paradigms. Nature Reviews Cardiology, 2014, 11, 554-554.	13.7	0
351	Antiobesity Strategy Targets Energy Economy Safeguards. Molecular Therapy, 2015, 23, 615-616.	8.2	0
352	Cardiopoietic Stem Cells for Heart Failure Therapy., 2016,, 235-241.		0
353	Decoding Sex-Biased Gene Expression Patterns in Heart Disease. Mayo Clinic Proceedings, 2020, 95, 636-638.	3.0	0
354	Cardiac ATP-Sensitive Potassium Channel: A Bi-Functional Channel/Enzyme Multimer. Progress in Experimental Cardiology, 2004, , 167-180.	0.0	0
355	Induced Pluripotent Cells for Myocardial Infarction Repair. , 2011, , 263-280.		0
356	Stem Cell Based Cardioregeneration and Adipose Tissue. , 2011, , 141-154.		0
357	Cardiac ATP-Sensitive Potassium Channels and Associated Channelopathies., 2013,, 245-258.		0
358	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2013, , 505-528.		0
359	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2016, , 41-64.		0
360	Aging-associated susceptibility to stress-induced ventricular arrhythmogenesis is attenuated by tetrodotoxin. Biochemical and Biophysical Research Communications, 2022, 623, 44-50.	2.1	0