Kenneth S Suslick

List of Publications by Citations

Source: https://exaly.com/author-pdf/201683/kenneth-s-suslick-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38,028 188 98 332 h-index g-index citations papers 363 7.78 11.2 40,921 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
332	Sonochemistry. <i>Science</i> , 1990 , 247, 1439-45	33.3	2251
331	Applications of ultrasound to the synthesis of nanostructured materials. <i>Advanced Materials</i> , 2010 , 22, 1039-59	24	1298
330	APPLICATIONS OF ULTRASOUND TO MATERIALS CHEMISTRY. <i>Annual Review of Materials Research</i> , 1999 , 29, 295-326		1285
329	A colorimetric sensor array for odour visualization. <i>Nature</i> , 2000 , 406, 710-3	50.4	1163
328	Sonochemical synthesis of amorphous iron. <i>Nature</i> , 1991 , 353, 414-416	50.4	1037
327	Sonochemical hot spot. <i>Journal of the American Chemical Society</i> , 1986 , 108, 5641-5642	16.4	978
326	The temperature of cavitation. <i>Science</i> , 1991 , 253, 1397-9	33.3	873
325	Sonochemical synthesis of nanomaterials. <i>Chemical Society Reviews</i> , 2013 , 42, 2555-67	58.5	711
324	The Chemical Effects of Ultrasound. <i>Scientific American</i> , 1989 , 260, 80-86	0.5	630
323	Optical sensor arrays for chemical sensing: the optoelectronic nose. <i>Chemical Society Reviews</i> , 2013 , 42, 8649-82	58.5	595
322	Acoustic cavitation and its chemical consequences. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 1999 , 357, 335-353	3	517
321	Sonochemical Synthesis of Iron Colloids. <i>Journal of the American Chemical Society</i> , 1996 , 118, 11960-11	966.4	493
320	Interparticle collisions driven by ultrasound. <i>Science</i> , 1990 , 247, 1067-9	33.3	482
319	One-dimensional coordination polymers: Applications to material science. <i>Coordination Chemistry Reviews</i> , 1993 , 128, 293-322	23.2	465
318	Microporous porphyrin solids. Accounts of Chemical Research, 2005, 38, 283-91	24.3	454
317	Plasma formation and temperature measurement during single-bubble cavitation. <i>Nature</i> , 2005 , 434, 52-5	50.4	445
316	Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. <i>Annual Review of Physical Chemistry</i> , 2008 , 59, 659-83	15.7	439

315	A functional zeolite analogue assembled from metalloporphyrins. <i>Nature Materials</i> , 2002 , 1, 118-21	27	412
314	The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. <i>Chemical Reviews</i> , 2019 , 119, 231-292	68.1	404
313	Colorimetric sensor arrays for volatile organic compounds. <i>Analytical Chemistry</i> , 2006 , 78, 3591-600	7.8	397
312	Sonoluminescence temperatures during multi-bubble cavitation. <i>Nature</i> , 1999 , 401, 772-775	50.4	397
311	An optoelectronic nose for the detection of toxic gases. <i>Nature Chemistry</i> , 2009 , 1, 562-7	17.6	363
310	Synthetic hosts by monomolecular imprinting inside dendrimers. <i>Nature</i> , 2002 , 418, 399-403	50.4	345
309	Dendrimer-Metalloporphyrins: Synthesis and Catalysis. <i>Journal of the American Chemical Society</i> , 1996 , 118, 5708-5711	16.4	344
308	Sonochemical preparation of hollow nanospheres and hollow nanocrystals. <i>Journal of the American Chemical Society</i> , 2005 , 127, 2368-9	16.4	334
307	Sonochemical synthesis of highly fluorescent ag nanoclusters. ACS Nano, 2010, 4, 3209-14	16.7	323
306	Nanotechnology, nanotoxicology, and neuroscience. <i>Progress in Neurobiology</i> , 2009 , 87, 133-70	10.9	313
305	Nature of O2 and CO binding to metalloporphyrins and heme proteins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1976 , 73, 3333-7	11.5	305
304	On the origin of sonoluminescence and sonochemistry. <i>Ultrasonics</i> , 1990 , 28, 280-90	3.5	298
303	The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. <i>Nature</i> , 2002 , 418, 394-7	50.4	290
302	Sonochemical Synthesis of Nanostructured Molybdenum Sulfide. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6189-6190	16.4	267
301	A colorimetric sensor array for organics in water. <i>Journal of the American Chemical Society</i> , 2005 , 127, 11548-9	16.4	263
300	Nanostructured Materials Generated by High-Intensity Ultrasound:□Sonochemical Synthesis and Catalytic Studies. <i>Chemistry of Materials</i> , 1996 , 8, 2172-2179	9.6	251
299	Colorimetric sensor arrays for molecular recognition. <i>Tetrahedron</i> , 2004 , 60, 11133-11138	2.4	250
298	Hot Spot Conditions during Cavitation in Water. <i>Journal of the American Chemical Society</i> , 1999 , 121, 5817-5818	16.4	246

297	Molecular recognition and discrimination of amines with a colorimetric array. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4528-32	16.4	243
296	Shape-selective alkane hydroxylation by metalloporphyrin catalysts. <i>Journal of the American Chemical Society</i> , 1986 , 108, 7281-7286	16.4	243
295	Protein microencapsulation of nonaqueous liquids. <i>Journal of the American Chemical Society</i> , 1990 , 112, 7807-7809	16.4	240
294	Nanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties. <i>Journal of the American Chemical Society</i> , 1996 , 118, 5492-5493	16.4	229
293	Sonochemical synthesis of nanosized hollow hematite. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2242-3	16.4	222
292	A colorimetric sensor array for detection of triacetone triperoxide vapor. <i>Journal of the American Chemical Society</i> , 2010 , 132, 15519-21	16.4	214
291	Porous MoS2 synthesized by ultrasonic spray pyrolysis. <i>Journal of the American Chemical Society</i> , 2005 , 127, 9990-1	16.4	211
290	Models for the active site of oxygen-binding hemoproteins. Dioxygen binding properties and the structures of (2-methylimidazole)-meso-tetra(.alpha.,.alpha.,.alpha.,.alpha.o-pivalamidophenyl)porphyrinatoiron(II)-e	16.4 ethano	211
289	A simple and highly sensitive colorimetric detection method for gaseous formaldehyde. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4046-7	16.4	209
288	Colorimetric sensor array for soft drink analysis. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 237-42	5.7	202
287	Preoxidation for colorimetric sensor array detection of VOCs. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16786-9	16.4	199
286	Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas. <i>Analytical Chemistry</i> , 2010 , 82, 2067-73	7.8	197
285	Rapid identification of bacteria with a disposable colorimetric sensing array. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7571-6	16.4	196
284	BiVO4 as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 11980-11983	3.8	191
283	Engineered microsphere contrast agents for optical coherence tomography. <i>Optics Letters</i> , 2003 , 28, 1546-8	3	187
282	Air-filled proteinaceous microbubbles: synthesis of an echo-contrast agent. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1991 , 88, 7708-10	11.5	187
281	A colorimetric sensor array for identification of toxic gases below permissible exposure limits. <i>Chemical Communications</i> , 2010 , 46, 2037-9	5.8	179
280	Colorimetric sensor arrays for the analysis of beers: a feasibility study. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 4925-31	5.7	177

(1993-2010)

	Colorimetric sensor array for determination and identification of toxic industrial chemicals. <i>Analytical Chemistry</i> , 2010 , 82, 9433-40	7.8	176
278	Chemistry Induced by Hydrodynamic Cavitation. <i>Journal of the American Chemical Society</i> , 1997 , 119, 9303-9304	16.4	171
277	Push-pull porphyrins as nonlinear optical materials. <i>Journal of the American Chemical Society</i> , 1992 , 114, 6928-6930	16.4	165
276	Comparison of multibubble and single-bubble sonoluminescence spectra. <i>Physical Review Letters</i> , 1995 , 75, 2602-2605	7.4	164
275	Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. <i>Journal of Thoracic Oncology</i> , 2012 , 7, 137-42	8.9	163
274	Alkane sonochemistry. <i>The Journal of Physical Chemistry</i> , 1983 , 87, 2299-2301		163
273	Oxygen binding to cobalt porphyrins. <i>Journal of the American Chemical Society</i> , 1978 , 100, 2761-2766	16.4	162
272	Magnetic and porous nanospheres from ultrasonic spray pyrolysis. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12007-10	16.4	161
271	High velocity interparticle collisions driven by ultrasound. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13890-1	16.4	161
270	The materials chemistry of porphyrins and metalloporphyrins 2000 , 04, 407-413		155
269	Sonocrystallization and sonofragmentation. <i>Ultrasonics Sonochemistry</i> , 2014 , 21, 1908-15	8.9	152
268	Variation of protein corona composition of gold nanoparticles following plasmonic heating. <i>Nano Letters</i> , 2014 , 14, 6-12	11.5	151
268 267	Variation of protein corona composition of gold nanoparticles following plasmonic heating. <i>Nano Letters</i> , 2014 , 14, 6-12 Hydrogen-Bonded Porphyrinic Solids: Supramolecular Networks of Octahydroxy Porphyrins. <i>Journal of the American Chemical Society</i> , 1997 , 119, 8492-8502	11.5	
	Hydrogen-Bonded Porphyrinic Solids: Supramolecular Networks of Octahydroxy Porphyrins.		
267	Hydrogen-Bonded Porphyrinic Solids: Supramolecular Networks of Octahydroxy Porphyrins. Journal of the American Chemical Society, 1997, 119, 8492-8502 Porous, Hollow, and Ball-in-Ball Metal Oxide Microspheres: Preparation, Endocytosis, and	16.4	151
267 266	Hydrogen-Bonded Porphyrinic Solids: Supramolecular Networks of Octahydroxy Porphyrins. Journal of the American Chemical Society, 1997, 119, 8492-8502 Porous, Hollow, and Ball-in-Ball Metal Oxide Microspheres: Preparation, Endocytosis, and Cytotoxicity. Advanced Materials, 2006, 18, 1832-1837	16.4	151 150 144
267266265	Hydrogen-Bonded Porphyrinic Solids: Supramolecular Networks of Octahydroxy Porphyrins. Journal of the American Chemical Society, 1997, 119, 8492-8502 Porous, Hollow, and Ball-in-Ball Metal Oxide Microspheres: Preparation, Endocytosis, and Cytotoxicity. Advanced Materials, 2006, 18, 1832-1837 Molecular emission from single-bubble sonoluminescence. Nature, 2000, 407, 877-9 Sonochemical preparation of functionalized graphenes. Journal of the American Chemical Society,	16.4 24 50.4	151 150 144 137

261	Nanostructured ZnS:Ni2+ Photocatalysts Prepared by Ultrasonic Spray Pyrolysis. <i>Advanced Materials</i> , 2008 , 20, 2599-2603	24	133
260	Porous carbon powders prepared by ultrasonic spray pyrolysis. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12642-3	16.4	132
259	Molecular imprinting inside dendrimers. <i>Journal of the American Chemical Society</i> , 2003 , 125, 13504-18	16.4	129
258	Magnetomotive contrast for in vivo optical coherence tomography. <i>Optics Express</i> , 2005 , 13, 6597-614	3.3	128
257	Heterogeneous sonocatalysis with nickel powder. <i>Journal of the American Chemical Society</i> , 1987 , 109, 3459-3461	16.4	126
256	Colorimetric detection and identification of natural and artificial sweeteners. <i>Analytical Chemistry</i> , 2009 , 81, 6526-33	7.8	124
255	Sonochemistry and sonoluminescence of room-temperature ionic liquids. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11138-9	16.4	120
254	A robust microporous zinc porphyrin framework solid. <i>Inorganic Chemistry</i> , 2003 , 42, 7719-21	5.1	119
253	Sonofragmentation of molecular crystals. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14530-3	16.4	117
252	An optoelectronic nose: "seeing" smells by means of colorimetric sensor arrays. <i>MRS Bulletin</i> , 2004 , 29, 720-5	3.2	117
251	Applications of Ultrasound to Materials Chemistry. MRS Bulletin, 1995, 20, 29-34	3.2	117
250	Effects of high intensity ultrasound on inorganic solids. <i>Ultrasonics</i> , 1987 , 25, 56-9	3.5	117
249	Sonochemistry and sonocatalysis of metal carbonyls. <i>Journal of the American Chemical Society</i> , 1983 , 105, 5781-5785	16.4	115
248	Is the olfactory receptor a metalloprotein?. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 3035-9	11.5	114
247	Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe. <i>Ultrasonics Sonochemistry</i> , 2011 , 18, 842-6	8.9	112
246	Chemical aerosol flow synthesis of semiconductor nanoparticles. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12196-7	16.4	109
245	An optoelectronic nose for identification of explosives. <i>Chemical Science</i> , 2016 , 7, 199-206	9.4	108
244	Tumor targeting by surface-modified protein microspheres. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3472-3	16.4	106

243	A colorimetric sensor array for detection and identification of sugars. <i>Organic Letters</i> , 2008 , 10, 4405-8	6.2	103
242	Shape selective epoxidation of alkenes by metalloporphyrin-dendrimers. <i>Journal of Molecular Catalysis A</i> , 1996 , 113, 109-116		101
241	Sonochemical synthesis of nanostructured catalysts. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1995 , 204, 186-192	5.3	101
240	Sonochemistry in non-aqueous liquids. <i>Ultrasonics</i> , 1984 , 22, 33-36	3.5	101
239	Photochemical reduction of nitrate and nitrite by manganese and iron porphyrins. <i>Inorganic Chemistry</i> , 1991 , 30, 912-919	5.1	100
238	Langmuir-Blodgett Films of Amphiphilic Push-Pull Porphyrins. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 383-385		99
237	Sonoluminescence from nonaqueous liquids: emission from small molecules. <i>Journal of the American Chemical Society</i> , 1989 , 111, 6987-6992	16.4	99
236	Characterization of sonochemically prepared proteinaceous microspheres. <i>Ultrasonics Sonochemistry</i> , 1994 , 1, S65-S68	8.9	98
235	Sonoluminescence from non-aqueous liquids. <i>Nature</i> , 1987 , 330, 553-5	50.4	91
234	Portable Optoelectronic Nose for Monitoring Meat Freshness. <i>ACS Sensors</i> , 2016 , 1, 1330-1335	9.2	90
233	A perspective on four new porphyrin-based functional materials and devices. <i>Journal of Porphyrins and Phthalocyanines</i> , 2002 , 06, 243-258	1.8	90
232	Effect of cavitation conditions on amorphous metal synthesis. <i>Ultrasonics</i> , 1992 , 30, 168-172	3.5	90
231	Temperature of Multibubble Sonoluminescence in Water. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 10783-10788	2.8	88
230	Chemically responsive nanoporous pigments: colorimetric sensor arrays and the identification of aliphatic amines. <i>Langmuir</i> , 2008 , 24, 13168-72	4	86
229	Structural changes upon oxygenation of an iron(II)(porphyrinato)(imidazole) complex. <i>Journal of the American Chemical Society</i> , 1978 , 100, 6769-6770	16.4	86
228	The sonochemistry of zinc powder. <i>Journal of the American Chemical Society</i> , 1989 , 111, 2342-2344	16.4	85
227	Spatial separation of cavitating bubble populations: the nanodroplet injection model. <i>Journal of the American Chemical Society</i> , 2009 , 131, 6060-1	16.4	84
226	Porous Carbon Supports Prepared by Ultrasonic Spray Pyrolysis for Direct Methanol Fuel Cell Electrodes. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10959-10964	3.8	84

225	Reduced oxy intermediate observed in D251N cytochrome P450cam. <i>Biochemistry</i> , 1997 , 36, 5104-7	3.2	83
224	Dual Templating Synthesis of Mesoporous Titanium Nitride Microspheres. <i>Advanced Materials</i> , 2009 , 21, 3186-3190	24	79
223	Inertially confined plasma in an imploding bubble. <i>Nature Physics</i> , 2010 , 6, 598-601	16.2	78
222	Synthesis and characterization of iron-impregnated porous carbon spheres prepared by ultrasonic spray pyrolysis. <i>Carbon</i> , 2011 , 49, 587-598	10.4	78
221	Effect of Solutes on Single-Bubble Sonoluminescence in Water. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 8462-8465	2.8	78
220	Pressure during Sonoluminescence Journal of Physical Chemistry B, 2003, 107, 7303-7306	3.4	77
219	Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. <i>Physical Review Letters</i> , 2000 , 84, 777-80	7.4	77
218	Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structures. <i>Applied Catalysis A: General</i> , 1999 , 184, 1-9	5.1	77
217	Shape-Selective Ligation to Dendrimer Metalloporphyrins. <i>Journal of the American Chemical Society</i> , 1999 , 121, 262-263	16.4	77
216	Organometallic Sonochemistry. Advances in Organometallic Chemistry, 1986, 73-119	3.8	77
215	Sonoluminescence from alkali-metal salt solutions. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 1484-14	88	76
214	Differential sensing of sugars by colorimetric arrays. Current Opinion in Chemical Biology, 2010, 14, 758-	66 .7	75
213	Cavitation Thermometry Using Molecular and Continuum Sonoluminescence. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 6612-6619		75
212	Sonochemistry and sonoluminescence in ionic liquids, molten salts, and concentrated electrolyte solutions. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 3513-3517	2.3	74
211	Sonochemical preparation of supported hydrodesulfurization catalysts. <i>Journal of the American Chemical Society</i> , 2001 , 123, 8310-6	16.4	74
211210		16.4 16.4	74 74
	Chemical Society, 2001, 123, 8310-6 Electronic states and optical properties of porphyrins in van der Waals contact: thorium(IV)	16.4	

(2004-1986)

207	The site of sonochemical reactions. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,</i> 1986, 33, 143-7	3.2	72
206	Mechanochemistry and sonochemistry: concluding remarks. Faraday Discussions, 2014, 170, 411-22	3.6	71
205	Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3838-9	16.4	71
204	Plasma line emission during single-bubble cavitation. <i>Physical Review Letters</i> , 2005 , 95, 044301	7.4	71
203	Hand-Held Reader for Colorimetric Sensor Arrays. Analytical Chemistry, 2015 , 87, 7810-6	7.8	70
202	The synthetic analogs of O2-binding heme proteins. <i>Journal of Chemical Education</i> , 1985 , 62, 974	2.4	69
201	Differentiation among peroxide explosives with an optoelectronic nose. <i>Chemical Communications</i> , 2015 , 51, 15312-5	5.8	68
200	Carbonyl Complexes of Iron(II), Ruthenium(II), and Osmium(II) 5,10,15,20-Tetraphenylporphyrinates: A Comparative Investigation by X-ray Crystallography, Solid-State NMR Spectroscopy, and Density Functional Theory. <i>Journal of the American Chemical</i>	16.4	68
199	Photochemistry of (5,10,15,20-tetraphenylporphyrinato)iron(III) halide complexes, Fe(TPP)(X). <i>Journal of the American Chemical Society</i> , 1987 , 109, 1243-1244	16.4	67
198	Formation and characterization of polyglutamate core-shell microspheres. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6540-1	16.4	66
197	Ultrasonic hammer produces hot spots in solids. <i>Nature Communications</i> , 2015 , 6, 6581	17.4	65
196	Sonochemistry and sonocatalysis of iron carbonyls. <i>Journal of the American Chemical Society</i> , 1981 , 103, 7342-7344	16.4	65
195	Carbon Microspheres as Supercapacitors. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 20481-20486	3.8	64
194	Intense mechanoluminescence and gas phase reactions from the sonication of an organic slurry. Journal of the American Chemical Society, 2007 , 129, 6718-9	16.4	64
193	Dynamics of a sonoluminescing bubble in sulfuric acid. <i>Physical Review Letters</i> , 2005 , 95, 254301	7.4	63
192	A colorimetric sensor array of porous pigments. <i>Analyst, The</i> , 2009 , 134, 2453-7	5	62
191	Seeing smells: development of an optoelectronic nose. <i>Quimica Nova</i> , 2007 , 30, 677-681	1.6	62
190	Hydrodehalogenation with sonochemically prepared Mo2C and W2C. <i>Catalysis Today</i> , 2004 , 88, 139-151	5.3	61

189	Actinide bis(porphyrinate) .piradical cations and dications, including the x-ray crystal structure of [(TPP)2Th][SbCl6]. <i>Journal of the American Chemical Society</i> , 1988 , 110, 2011-2012	16.4	61
188	A bis-pocket porphyrin. <i>Journal of the American Chemical Society</i> , 1983 , 105, 3507-3510	16.4	61
187	Photodegradation of BiNbO4 Powder during Photocatalytic Reactions. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10341-10345	3.8	59
186	Moessbauer spectra of oxidized iron porphyrins. <i>Inorganic Chemistry</i> , 1983 , 22, 367-368	5.1	59
185	Fast atom bombardment mass spectroscopy (FABMS) of polyoxoanions. <i>Journal of the American Chemical Society</i> , 1984 , 106, 5750-5751	16.4	59
184	Measurement of pressure and density inside a single sonoluminescing bubble. <i>Physical Review Letters</i> , 2006 , 96, 204301	7.4	57
183	Sonoluminescence from metal carbonyls. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 3098-3099		57
182	Letter: Oxygen binding to iron porphyrins. <i>Journal of the American Chemical Society</i> , 1975 , 97, 7185-6	16.4	57
181	The Chemical History of a Bubble. Accounts of Chemical Research, 2018, 51, 2169-2178	24.3	56
180	Regioselective epoxidations of dienes with manganese(III) porphyrin catalysts. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 200		55
179	Synthesis and characterization of actinide mono and bis porphyrin complexes. <i>Inorganic Chemistry</i> , 1987 , 26, 343-344	5.1	55
178	Nanostructured Materials Synthesis Using Ultrasound. <i>Topics in Current Chemistry</i> , 2017 , 375, 12	7.2	54
177	The Effects of Ultrasound on Crystals: Sonocrystallization and Sonofragmentation. <i>Crystals</i> , 2018 , 8, 28	302.3	53
176	Compression-induced deformation of individual metal-organic framework microcrystals. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1750-3	16.4	53
175	Putidaredoxin reduction of cytochrome P-450cam: dependence of electron transfer on the identity of putidaredoxinß C-terminal amino acid. <i>Journal of the American Chemical Society</i> , 1990 , 112, 7396-73	98 ^{16.4}	53
174	Bond breakage under pressure in a metal organic framework. <i>Chemical Science</i> , 2017 , 8, 8004-8011	9.4	52
173	Porous carbon spheres from energetic carbon precursors using ultrasonic spray pyrolysis. <i>Advanced Materials</i> , 2012 , 24, 6028-33	24	52
172	Quantum Dots from Chemical Aerosol Flow Synthesis: Preparation, Characterization, and Cellular Imaging. <i>Chemistry of Materials</i> , 2008 , 20, 4033-4038	9.6	52

171	Synthetic Heme P eptide Complexes. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6183-6184	16.4	51
170	MBsbauer-effect and x-ray-absorption spectral study of sonochemically prepared amorphous iron. <i>Physical Review B</i> , 1998 , 57, 10716-10722	3.3	51
169	The enhancement of intercalation reactions by ultrasound. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 900		51
168	Ultrasound in Synthesis. <i>Modern Synthetic Methods</i> , 1986 , 1-60		51
167	Identification of Nanoparticles with a Colorimetric Sensor Array. ACS Sensors, 2016, 1, 17-21	9.2	50
166	Emission from electronically excited metal atoms during single-bubble Sonoluminescence. <i>Physical Review Letters</i> , 2007 , 99, 134301	7.4	50
165	Synthesis and structure of transition-metal bis(porphyrinato) complexes. Characterization of Zr(TPP)2 and Zr(OEP)2. <i>Inorganic Chemistry</i> , 1991 , 30, 2652-2656	5.1	50
164	Sonochemical activation of transition metals. Journal of the American Chemical Society, 1984, 106, 6856	5-685β	50
163	Shock Wave Chemistry in a Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4619-4622	16.4	48
162	Sonochemically produced fluorocarbon microspheres: a new class of magnetic resonance imaging agent. <i>Journal of Magnetic Resonance Imaging</i> , 1996 , 6, 675-83	5.6	48
161	Observation of a new low-energy fluorescent 1(.pi.,.pi.*) excited state in strongly coupled porphyrin dimers. <i>Journal of the American Chemical Society</i> , 1990 , 112, 4075-4077	16.4	48
160	Sonochemistry of dimanganese decacarbonyl (Mn2(CO)10) and dirhenium decacarbonyl (Re2(CO)10). <i>Journal of the American Chemical Society</i> , 1983 , 105, 6042-6044	16.4	48
159	Colorimetric Sensor Array for Monitoring CO and Ethylene. <i>Analytical Chemistry</i> , 2019 , 91, 797-802	7.8	48
158	A Hand-Held Optoelectronic Nose for the Identification of Liquors. ACS Sensors, 2018, 3, 121-127	9.2	48
157	Identification of pathogenic fungi with an optoelectronic nose. <i>Analyst, The</i> , 2014 , 139, 1922-8	5	47
156	Molecular Recognition and Discrimination of Amines with a Colorimetric Array. <i>Angewandte Chemie</i> , 2005 , 117, 4604-4608	3.6	47
155	Sonochemical Preparation of a Nanostructured Bifunctional Catalyst. <i>Journal of the American Chemical Society</i> , 2000 , 122, 5214-5215	16.4	46
154	Neutron diffraction on amorphous iron powder. <i>Physical Review B</i> , 1993 , 48, 15797-15800	3.3	46

153	Low-spin five-coordinate ferric porphyrin complex: [5, 10, 15, 20-tetrakis(4-methoxyphenyl)porphyrinato](hydrosulfido)iron(III). <i>Journal of the American Chemical Society</i> , 1984 , 106, 7258-7259	16.4	46
152	Colorimetric sensor arrays: Interplay of geometry, substrate and immobilization. <i>Sensors and Actuators B: Chemical</i> , 2014 , 197, 116-122	8.5	45
151	Shock initiation of explosives: High temperature hot spots explained. <i>Applied Physics Letters</i> , 2017 , 111, 061902	3.4	45
150	Gold nanoparticles encapsulated in porous carbon. <i>Chemical Communications</i> , 2012 , 48, 11094-6	5.8	45
149	Nanostructured Carbons Prepared by Ultrasonic Spray Pyrolysis. <i>Chemistry of Materials</i> , 2010 , 22, 1610-	196162	45
148	De novo designed cyclic-peptide heme complexes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 13140-5	11.5	45
147	A four-coordinate Fe(III) porphyrin cation. <i>Journal of the American Chemical Society</i> , 2008 , 130, 1134-5	16.4	44
146	Shape-Selective Discrimination of Small Organic Molecules. <i>Journal of the American Chemical Society</i> , 2000 , 122, 11565-11566	16.4	43
145	Influences on carbon monoxide and dioxygen binding to iron(II) porphyrins. <i>Journal of the American Chemical Society</i> , 1984 , 106, 4522-4525	16.4	43
144	Energy Storage during Compression of Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4667-4670	16.4	42
143	Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents. <i>Molecular Imaging and Biology</i> , 2012 , 14, 17-24	3.8	42
142	Porous TiO2 microspheres with tunable properties for photocatalytic air purification. <i>Ultrasonics Sonochemistry</i> , 2013 , 20, 445-51	8.9	42
141	Mechanical activation of CaO-based adsorbents for CO(2) capture. <i>ChemSusChem</i> , 2013 , 6, 193-8	8.3	42
140	Tuning the Vibrational Relaxation of CO Bound to Heme and Metalloporphyrin Complexes. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 18023-18032		42
139	Rapid Quantification of Trimethylamine. <i>Analytical Chemistry</i> , 2016 , 88, 5615-20	7.8	42
138	Disease-specific protein corona sensor arrays may have disease detection capacity. <i>Nanoscale Horizons</i> , 2019 , 4, 1063-1076	10.8	41
137	Effect of reaction conditions on size and morphology of ultrasonically prepared Ni(OH)(2) powders. <i>Ultrasonics Sonochemistry</i> , 2011 , 18, 901-6	8.9	41
136	Discotic Liquid Crystals from a Bis-Pocketed Porphyrin. <i>Journal of the American Chemical Society</i> , 1998 , 120, 11802-11803	16.4	41

(1991-1980)

135	Resonance Raman spectra of (dioxygen)(porphyrinato)(hindered imidazole)iron(II) complexes: implications for hemoglobin cooperativity. <i>Journal of the American Chemical Society</i> , 1980 , 102, 6857-68	358 ^{.4}	41
134	Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy. <i>Review of Scientific Instruments</i> , 2014 , 85, 023705	1.7	39
133	BIS(PORPHYRIN)ACTINIDE COMPLEXES AND THEIR RADICAL CATIONS AND DICATIONS. <i>Journal of Coordination Chemistry</i> , 1994 , 32, 173-212	1.6	39
132	The effects of ultrasound on nickel and copper powders. <i>Solid State Ionics</i> , 1989 , 32-33, 444-452	3.3	39
131	Photocatalytic oxidation of hydrocarbons by (5,10,15,20-tetraphenylporphyrinato)manganese(II) perchlorate and periodate. <i>Journal of the American Chemical Society</i> , 1987 , 109, 2818-2819	16.4	39
130	Highlights from Faraday Discussion 170: challenges and opportunities of modern mechanochemistry, Montreal, Canada, 2014. <i>Chemical Communications</i> , 2015 , 51, 6248-56	5.8	38
129	Characterization of very large polyoxoanions by fast atom bombardment mass spectroscopy (FABMS). <i>Inorganic Chemistry</i> , 1986 , 25, 241-243	5.1	38
128	Temperature inhomogeneity during multibubble sonoluminescence. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1079-82	16.4	37
127	Hydrophobic interactions in metalloporphyrin-peptide complexes. <i>Inorganic Chemistry</i> , 2000 , 39, 5418-9	9 5.1	36
126	Ultrasonic irradiation of copper powder. <i>Chemistry of Materials</i> , 1989 , 1, 6-8	9.6	36
125	Rare example of a monomeric aryllithium complex. X-ray crystal structure of (2,4,6-triphenylphenyl)lithium-bis(diethyl ether). <i>Organometallics</i> , 1992 , 11, 3907-3910	3.8	35
124	Materials synthesis in a bubble. <i>MRS Bulletin</i> , 2019 , 44, 382-391	3.2	34
123	Molecular emission and temperature measurements from single-bubble sonoluminescence. <i>Physical Review Letters</i> , 2010 , 104, 244301	7.4	33
122	Ultrafast electronic deactivation and vibrational dynamics of photoexcited uranium(IV) porphyrin sandwich complexes. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 7216-7221		33
121	Shock Wave Energy Absorption in Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2220-2223	16.4	32
120	Sonochemically Produced Hemoglobin Microbubbles. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 372, 89		30
119	Ultrasound promoted hypervalent iodine reactions: (£losyloxylation of ketones with [hydroxy(tosyloxy)iodo]benzene. <i>Tetrahedron Letters</i> , 1992 , 33, 7647-7650	2	30
118	Core size and flexibility of metallohydroporphyrin macrocycles. Implications for F430 coordination chemistry. <i>Journal of the American Chemical Society</i> , 1991 , 113, 9824-9827	16.4	30

117	Synthesis of Poly(3,4-ethylenedioxythiophene) Microspheres by Ultrasonic Spray Polymerization (USPo). <i>Chemistry of Materials</i> , 2015 , 27, 7559-7563	9.6	29
116	Nanostructured Substrates for Optical Sensing. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2934-294	1 4 6.4	29
115	Cyclic and hairpin peptide complexes of heme. Journal of the American Chemical Society, 2002, 124, 123	394654	29
114	A calcium-bridged porphyrin coordination network. <i>Journal of Porphyrins and Phthalocyanines</i> , 2002 , 06, 377-381	1.8	29
113	Interaction of dioxygen with binuclear nitride-bridged iron porphyrins. <i>Inorganic Chemistry</i> , 1984 , 23, 800-807	5.1	29
112	CaO-based sorbents for CO2 capture prepared by ultrasonic spray pyrolysis. RSC Advances, 2013, 3, 198	3 73 .7	28
111	Carbon Powders Prepared by Ultrasonic Spray Pyrolysis of Substituted Alkali Benzoates <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17807-17811	3.8	27
110	Sonochemical modification of the superconducting properties of MgB2. <i>Applied Physics Letters</i> , 2003 , 83, 2019-2021	3.4	27
109	Identification of accelerants, fuels and post-combustion residues using a colorimetric sensor array. <i>Analyst, The</i> , 2015 , 140, 5929-35	5	26
108	Vibrational Relaxation in Metalloporphyrin CO Complexes. <i>Journal of the American Chemical Society</i> , 1996 , 118, 7853-7854	16.4	26
107	Electronically asymmetric bis(porphyrin) sandwich complexes. <i>Inorganic Chemistry</i> , 1994 , 33, 626-627	5.1	26
106	Shape-selective alkane hydroxylation. <i>Journal of the Chemical Society Chemical Communications</i> , 1985 , 580		26
105	(.muNitrido)bis[(5,10,15,20-tetraphenylporphyrinato)iron](2+), an iron(IV) porphyrin .piradical cation. <i>Inorganic Chemistry</i> , 1985 , 24, 121-122	5.1	26
104	Quantitative Imaging of Organic Ligand Density on Anisotropic Inorganic Nanocrystals. <i>Nano Letters</i> , 2019 , 19, 6308-6314	11.5	25
103	Ultrasound-enhanced reactivity of calcium in the reduction of aromatic hydrocarbons. <i>Ultrasonics Sonochemistry</i> , 2000 , 7, 53-61	8.9	25
102	Alternative iron-dioxygen bond lengths in dioxygen adducts of iron porphyrins: implications for hemoglobin cooperativity. <i>Journal of the American Chemical Society</i> , 1985 , 107, 2370-2373	16.4	25
101	Ultrasonic Preparation of Porous Silica-Dye Microspheres: Sensors for Quantification of Urinary Trimethylamine N-Oxide. <i>ACS Applied Materials & District Materials</i> (2018), 10, 15820-15828	9.5	24
100	Hot spot generation in energetic materials created by long-wavelength infrared radiation. <i>Applied Physics Letters</i> . 2014 . 104. 061907	3.4	24

99	Nanoscale porosity in pigments for chemical sensing. <i>Nanoscale</i> , 2011 , 3, 1971-3	7.7	24	
98	Spray-on omniphobic ZnO coatings. <i>RSC Advances</i> , 2015 , 5, 69243-69250	3.7	22	
97	Chemical Aerosol Flow Synthesis of Hollow Metallic Aluminum Particles. <i>Chemistry of Materials</i> , 2010 , 22, 4835-4837	9.6	22	
96	Structure and photochemistry of manganese porphyrin sulfate complexes. <i>Inorganic Chemistry</i> , 1991 , 30, 2311-2317	5.1	22	
95	Molecular and atomic emission during single- bubble cavitation in concentrated sulfuric acid. <i>Acoustics Research Letters Online: ARLO</i> , 2005 , 6, 157-161		21	
94	Metalloporphyrin photochemistry with matrix isolation. <i>Journal of the American Chemical Society</i> , 1991 , 113, 6111-6114	16.4	21	
93	Solvatochromic sensor array for the identification of common organic solvents. <i>Analyst, The</i> , 2015 , 140, 2613-7	5	20	
92	Synesthesia in science and technology: more than making the unseen visible. <i>Current Opinion in Chemical Biology</i> , 2012 , 16, 557-63	9.7	20	
91	Syntheses of boronic-acid-appended metalloporphyrins as potential colorimetric sensors for sugars and carbohydrates. <i>Journal of Porphyrins and Phthalocyanines</i> , 2005 , 09, 659-666	1.8	20	
90	Sonochemical Preparation of Nanostructured Catalysts 1996 , 197-212		19	
89	Upper bound for neutron emission from sonoluminescing bubbles in deuterated acetone. <i>Physical Review Letters</i> , 2007 , 98, 064301	7.4	19	
88	Sonofragmentation of Ionic Crystals. <i>Chemistry - A European Journal</i> , 2017 , 23, 2778-2782	4.8	18	
87	Supramolecular Networks of Octahydroxy Porphyrins. Supramolecular Chemistry, 1998, 9, 169-174	1.8	18	
86	On the Possibility of Metal Borides for Hydrodesulfurization. <i>Chemistry of Materials</i> , 2006 , 18, 3103-310	075.6	18	
85	The structure of amorphous iron at high pressures to 67GPa measured in a diamond anvil cell. <i>Physics of the Earth and Planetary Interiors</i> , 2004 , 143-144, 481-495	2.3	18	
84	High Surface Area Iron Oxide Microspheres via Ultrasonic Spray Pyrolysis of Ferritin Core Analogues. <i>Chemistry of Materials</i> , 2015 , 27, 3564-3567	9.6	17	
83	Plasma characteristics of the discharge produced during mechanoluminescence. <i>Physical Review Letters</i> , 2007 , 99, 234301	7.4	17	
82	Therapeutic Agents for Alzheimers Disease. <i>Current Medicinal Chemistry - Central Nervous System Agents</i> , 2005 , 5, 259-269		17	

81	A Zirconium Bis(porphyrinate) Sandwich Complex with an Appended Quinone. <i>Angewandte Chemie International Edition in English</i> , 1996 , 35, 1223-1225		17
80	Vibrational relaxation of carbon monoxide in model heme compounds. 6-coordinate metalloporphyrins (M = Fe, Ru, OS). <i>Chemical Physics Letters</i> , 1995 , 244, 218-223	2.5	16
79	The Optoelectronic Nose. Accounts of Chemical Research, 2021, 54, 950-960	24.3	16
78	Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. <i>Physics in Medicine and Biology</i> , 2015 , 60, 727-39	3.8	15
77	Ultrasensitive Monitoring of Museum Airborne Pollutants Using a Silver Nanoparticle Sensor Array. <i>ACS Sensors</i> , 2020 , 5, 2783-2791	9.2	15
76	Porous carbon produced in air: physicochemical properties and stem cell engineering. <i>Advanced Materials</i> , 2011 , 23, 2332-8	24	15
75	Plasma quenching by air during single-bubble sonoluminescence. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 9315-8	2.8	15
74	Recent developments in robust microporous porphyrin solids. <i>Journal of Porphyrins and Phthalocyanines</i> , 2004 , 08, 182-190	1.8	15
73	The Nature of the Continuum in Multibubble Sonoluminescence. <i>Journal of the American Chemical Society</i> , 2000 , 122, 8563-8564	16.4	15
72	In-vivo NMR thermometry with liposomes containing 59Co complexes. <i>International Journal of Hyperthermia</i> , 1995 , 11, 821-7	3.7	15
71	Photochemistry of Metalloporphyrin Carbene Complexes. <i>Journal of the American Chemical Society</i> , 1996 , 118, 5306-5307	16.4	15
70	Nanostructured Fe-Co Catalysts Generated by Ultrasound. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 351, 443		15
69	Magnetically Levitated Plasma Proteins. Analytical Chemistry, 2020, 92, 1663-1668	7.8	15
68	Sonochemistry and Sonoluminescence271-281		15
67	Spray Sonocrystallization. <i>Crystal Growth and Design</i> , 2015 , 15, 1564-1567	3.5	14
66	Synthesis of Manganese Oxide Microspheres by Ultrasonic Spray Pyrolysis and Their Application as Supercapacitors. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 899-906	3.1	14
65	Colorimetric sensor arrays: development and application to art conservation. <i>Journal of the American Institute for Conservation</i> , 2018 , 57, 127-140	0.6	13
64	MATRIX DISCRIMINANT ANALYSIS WITH APPLICATION TO COLORIMETRIC SENSOR ARRAY DATA. <i>Technometrics</i> , 2015 , 57, 524-534	1.4	13

63	Temperature Nonequilibration during Single-Bubble Sonoluminescence. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2401-4	6.4	13
62	Photochemical activation of metalloporphyrin carbene complexes. <i>Journal of Organometallic Chemistry</i> , 1997 , 528, 83-90	2.3	13
61	Effects of high-intensity ultrasound on Bi2Sr2CaCu2O8+x superconductor. <i>Applied Physics Letters</i> , 2004 , 85, 3513-3515	3.4	13
60	Models for cooperative oxygen binding in hemoglobin. <i>Pure and Applied Chemistry</i> , 1978 , 50, 951-961	2.1	13
59	Chemically Induced Sintering of Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 141	9 5 . 44	196
58	The effect of fluorocarbon gases on sonoluminescence: a failure of the electrical hypothesis. <i>Ultrasonics</i> , 1993 , 31, 463-465	3.5	12
57	Probing macrocycle flexibility: ligand binding to zinc and nickel tetraphenylhydroporphyrins. <i>Journal of the American Chemical Society</i> , 1990 , 112, 1283-1285	16.4	12
56	Nanostructured Materials Synthesis Using Ultrasound. <i>Topics in Current Chemistry Collections</i> , 2017 , 59-	9<u>4</u>. 8	11
55	Fe-based heterogeneous catalysts for the Fischer-Tropsch reaction: Sonochemical synthesis and bench-scale experimental tests. <i>Ultrasonics Sonochemistry</i> , 2017 , 34, 774-780	8.9	11
54	Magnetomotive optical coherence tomography for the assessment of atherosclerotic lesions using Integrin-targeted microspheres. <i>Molecular Imaging and Biology</i> , 2014 , 16, 36-43	3.8	11
53	New one-pot method for the synthesis of alkynyl sulfonate esters using ultrasound. <i>Tetrahedron Letters</i> , 1999 , 40, 599-602	2	11
52	Magnetic, Fluorescent, and Copolymeric Silicone Microspheres. <i>Advanced Science</i> , 2015 , 2, 1500114	13.6	10
51	Mechanochemical Reactions of Metal-Organic Frameworks. Advances in Inorganic Chemistry, 2018, 403-4	4 3 .4	10
50	Resonance Raman spectra of high oxidation state iron porphyrin dimers. <i>Inorganic Chemistry</i> , 1984 , 23, 3897-3901	5.1	10
49	Ultrafast Proton Transfer in Polymer Blends Triggered by Shock Waves. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3974-3977	16.4	9
48	Impact of air and water vapor environments on the hydrophobicity of surfaces. <i>Journal of Colloid and Interface Science</i> , 2015 , 453, 177-185	9.3	9
47	Intravascular magnetomotive optical coherence tomography of targeted early-stage atherosclerotic changes in ex vivo hyperlipidemic rabbit aortas. <i>Journal of Biophotonics</i> , 2016 , 9, 109-16	3.1	9
46	Colorimetric Recognition of Aldehydes and Ketones. <i>Angewandte Chemie</i> , 2017 , 129, 9992-9995	3.6	9

45	The development of a disposable gas chromatography microcolumn. <i>Chemical Communications</i> , 2015 , 51, 8920-3	5.8	9
44	Non-Boltzmann population distributions during single-bubble sonoluminescence. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 15886-93	3.4	9
43	Mathematical modelling of the evolution of the particle size distribution during ultrasound-induced breakage of aspirin crystals. <i>Chemical Engineering Research and Design</i> , 2018 , 132, 170-177	5.5	8
42	Thermal Explosions of Polymer-Bonded Explosives with High Time and Space Resolution. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 14289-14295	3.8	8
41	Magnetic contrast agents for optical coherence tomography 2004,		8
40	Magnetic and structural properties of amorphous transition metals and alloys. <i>Journal of Non-Crystalline Solids</i> , 1996 , 205-207, 656-659	3.9	8
39	The sonoluminescence spectrum of seawater. <i>Marine Chemistry</i> , 1992 , 40, 315-320	3.7	8
38	Drop hammer with high-speed thermal imaging. Review of Scientific Instruments, 2018, 89, 115104	1.7	8
37	Sonochemistry 2000 ,		7
36	Proteinaceous Microspheres. ACS Symposium Series, 1992 , 218-226	0.4	7
36	Proteinaceous Microspheres. <i>ACS Symposium Series</i> , 1992 , 218-226 Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock. <i>Accounts of Chemical Research</i> , 2020 , 53, 2806-2815	24.3	7
	Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock. <i>Accounts of Chemical</i>		7
35	Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock. <i>Accounts of Chemical Research</i> , 2020 , 53, 2806-2815 Ultrasonic Nebulization for TEM Sample Preparation on Single-Layer Graphene Grids. <i>Nano Letters</i> ,	24.3	7
35	Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock. <i>Accounts of Chemical Research</i> , 2020 , 53, 2806-2815 Ultrasonic Nebulization for TEM Sample Preparation on Single-Layer Graphene Grids. <i>Nano Letters</i> , 2019 , 19, 1938-1943 Tensor sufficient dimension reduction. <i>Wiley Interdisciplinary Reviews: Computational Statistics</i> ,	24.3	7
35 34 33	Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock. <i>Accounts of Chemical Research</i> , 2020 , 53, 2806-2815 Ultrasonic Nebulization for TEM Sample Preparation on Single-Layer Graphene Grids. <i>Nano Letters</i> , 2019 , 19, 1938-1943 Tensor sufficient dimension reduction. <i>Wiley Interdisciplinary Reviews: Computational Statistics</i> , 2015 , 7, 178-184 Single bubble perturbation in cavitation proximity of solid glass: hot spot versus distance. <i>Physical</i>	24.3 11.5	7 6 6
35 34 33 32	Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock. <i>Accounts of Chemical Research</i> , 2020 , 53, 2806-2815 Ultrasonic Nebulization for TEM Sample Preparation on Single-Layer Graphene Grids. <i>Nano Letters</i> , 2019 , 19, 1938-1943 Tensor sufficient dimension reduction. <i>Wiley Interdisciplinary Reviews: Computational Statistics</i> , 2015 , 7, 178-184 Single bubble perturbation in cavitation proximity of solid glass: hot spot versus distance. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3534-41 Composite CaO-Based CO2 Sorbents Synthesized by Ultrasonic Spray Pyrolysis: Experimental	24.3 11.5 1.4 3.6	7 6 6
35 34 33 32 31	Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock. <i>Accounts of Chemical Research</i> , 2020 , 53, 2806-2815 Ultrasonic Nebulization for TEM Sample Preparation on Single-Layer Graphene Grids. <i>Nano Letters</i> , 2019 , 19, 1938-1943 Tensor sufficient dimension reduction. <i>Wiley Interdisciplinary Reviews: Computational Statistics</i> , 2015 , 7, 178-184 Single bubble perturbation in cavitation proximity of solid glass: hot spot versus distance. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3534-41 Composite CaO-Based CO2 Sorbents Synthesized by Ultrasonic Spray Pyrolysis: Experimental Results and Modeling. <i>Energy & Description on Chemical Physics</i> , 2015 , 29, 4447-4452 Protein fibrillation and the olfactory system: speculations on their linkage. <i>Trends in Biotechnology</i> ,	24.3 11.5 1.4 3.6 4.1	7 6 6 5

(2000-1986)

27	Modern Synthetic Methods 1986. <i>Modern Synthetic Methods</i> , 1986 ,		5
26	Shock wave dissipation by metal organic framework 2018 ,		4
25	Near-field scanning optical microscopy of zinc-porphyrin crystals. <i>Ultramicroscopy</i> , 2000 , 84, 149-57	3.1	4
24	Sonochemistry of Organometallic Compounds. <i>ACS Symposium Series</i> , 1987 , 191-208	0.4	4
23	Pressure measurements during acoustic cavitation by sonoluminescence. <i>Fluid Mechanics and Its Applications</i> , 1994 , 311-320	0.2	4
22	Characterization of Magnetic Nanoparticle-Seeded Microspheres for Magnetomotive and Multimodal Imaging. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2019 , 25,	3.8	3
21	Sonochemical Synthesis and Catalytic Properties of Nanostructured Molybdenum Carbide. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 351, 201		3
20	Sonofragmentation of molecular crystals: Observations and Modeling 2013,		2
19	Porous Carbon Nanostructures: Porous Carbon Spheres from Energetic Carbon Precursors using Ultrasonic Spray Pyrolysis (Adv. Mater. 45/2012). <i>Advanced Materials</i> , 2012 , 24, 6114-6114	24	2
18	Sonocatalysis 2008 , 2007		2
17	Magnetic protein microspheres as dynamic contrast agents for magnetomotive optical coherence tomography 2008 ,		2
16	NMR structures of peptideRull(porphyrin) complexes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 14124-5	16.4	2
15	The kinetics of Mo(CO)6 substitution monitored by Fourier transform infrared spectrophotometry: A physical chemistry experiment. <i>Journal of Chemical Education</i> , 1987 , 64, 547	2.4	2
14	A non-coercive, menu driven grading scheme. <i>Journal of Chemical Education</i> , 1985 , 62, 408	2.4	2
13	Sonofragmentation of Organic Molecular Crystals vs Strength of Materials. <i>Journal of Organic Chemistry</i> , 2021 , 86, 13997-14003	4.2	2
12	Chemically Induced Sintering of Nanoparticles. <i>Angewandte Chemie</i> , 2019 , 131, 14331-14334	3.6	1
11	Microporous Porphyrin Solids. <i>ChemInform</i> , 2005 , 36, no		1
10	Sonochemistry: A physical perspective. AIP Conference Proceedings, 2000,	O	1

9	Ultrasonic Physical Mechanisms and Chemical Effects 1999 ,		1	
8	Ein Chinon-substituierter Bis(porphyrinato)-zirconium-Sandwichkomplex. <i>Angewandte Chemie</i> , 1996 , 108, 1310-1312	3.6	1	
7	Shape Selective Oxidation as a Mechanistic Probe 1990 , 209-215		1	
6	Sorption and catalysis by robust microporous metalloporphyrin framework solids. <i>Journal of Porphyrins and Phthalocyanines</i> , 2017 , 21, 857-869	1.8	O	
5	Quantitative Chemical Mapping of Anisotropic Molecular Distributions on Gold Nanorods. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1772-1773	0.5		
4	A siloxyl bis-pocket thiolate-tailed Fe(III) porphyrin complex. <i>Journal of Porphyrins and Phthalocyanines</i> , 2017 , 21, 790-795	1.8		
3	The Optoelectronic Nose. <i>Proceedings (mdpi)</i> , 2017 , 1, 823	0.3		
2	MODELS FOR COOPERATIVE OXYGEN BINDING IN HEMOGLOBIN 1979 , 951-961			
1	Quantitative Chemical Mapping of Soft-Hard Interfaces on Gold Nanorods. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1674-1675	0.5		