Sebastian Pawlus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2016706/publications.pdf

Version: 2024-02-01

147 papers 4,094 citations

126708 33 h-index 56 g-index

149 all docs 149 docs citations 149 times ranked 2717 citing authors

#	Article	IF	CITATIONS
1	Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture. Macromolecules, 2008, 41, 7232-7238.	2.2	294
2	Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3ceramics. Journal Physics D: Applied Physics, 2005, 38, 1450-1460.	1.3	215
3	Does the Arrhenius Temperature Dependence of the Johari-Goldstein Relaxation Persist aboveTg?. Physical Review Letters, 2003, 91, 115701.	2.9	167
4	Influence of Hydration on Protein Dynamics: Combining Dielectric and Neutron Scattering Spectroscopy Data. Journal of Physical Chemistry B, 2008, 112, 14273-14280.	1.2	165
5	The origin of the dynamic transition in proteins. Journal of Chemical Physics, 2008, 128, 195106.	1.2	149
6	Correlation between primary and secondary Johari–Goldstein relaxations in supercooled liquids: Invariance to changes in thermodynamic conditions. Journal of Chemical Physics, 2008, 128, 044512.	1.2	107
7	Dielectric Relaxation and Crystallization Kinetics of Ibuprofen at Ambient and Elevated Pressure. Journal of Physical Chemistry B, 2010, 114, 6579-6593.	1.2	106
8	Conductivity in Hydrated Proteins: No Signs of the Fragile-to-Strong Crossover. Physical Review Letters, 2008, 100, 108103.	2.9	89
9	Temperature and volume effects on the change of dynamics in propylene carbonate. Physical Review E, 2004, 70, 061501.	0.8	80
10	Pressure and Temperature Dependence of the \hat{l} ±-Relaxation in Poly(methyltolylsiloxane). Macromolecules, 2002, 35, 7338-7342.	2.2	68
11	Confinement for More Space: A Larger Free Volume and Enhanced Glassy Dynamics of 2-Ethyl-1-hexanol in Nanopores. Journal of Physical Chemistry Letters, 2015, 6, 3708-3712.	2.1	68
12	Dielectric Studies on Mobility of the Glycosidic Linkage in Seven Disaccharides. Journal of Physical Chemistry B, 2008, 112, 12816-12823.	1.2	66
13	Temperature and pressure dependence of the \hat{l}_{\pm} -relaxation in polymethylphenylsiloxane. Journal of Chemical Physics, 2002, 116, 10932-10937.	1.2	65
14	Changes in dynamic crossover with temperature and pressure in glass-forming diethyl phthalate. Physical Review E, 2003, 68, 021503.	0.8	65
15	Dielectric Spectroscopy Investigation of Relaxation in C ₆₀ â°'Polyisoprene Nanocomposites. Macromolecules, 2009, 42, 3201-3206.	2.2	60
16	Changes of relaxation dynamics of a hydrogen-bonded glass former after removal of the hydrogen bonds. Journal of Chemical Physics, 2006, 125, 144507.	1.2	57
17	Sub-Rouse Modes in Polymers Observed by Dielectric Spectroscopy. Macromolecules, 2010, 43, 3103-3106.	2.2	51
18	Structural and Secondary Relaxations in Supercooled Di-n-butyl Phthalate and Diisobutyl Phthalate at Elevated Pressure. Journal of Physical Chemistry B, 2004, 108, 4997-5003.	1.2	50

#	Article	IF	CITATIONS
19	Segmental- and normal-mode dielectric relaxation of poly(propylene glycol) under pressure. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3047-3052.	2.4	49
20	Decoupling between the Interfacial and Core Molecular Dynamics of Salol in 2D Confinement. Journal of Physical Chemistry C, 2015, 119, 14366-14374.	1.5	49
21	Two secondary modes in decahydroisoquinoline: Which one is the true Johari Goldstein process?. Journal of Chemical Physics, 2005, 122, 234506.	1.2	48
22	Effect of large hydrostatic pressure on the dielectric loss spectrum of type-Aglass formers. Physical Review E, 2004, 69, 050501.	0.8	43
23	Pressure effects on the α and α′ relaxations in polymethylphenylsiloxane. Journal of Chemical Physics, 2006, 124, 104901.	1.2	42
24	Oscillatory shear and high-pressure dielectric study of 5-methyl-3-heptanol. Colloid and Polymer Science, 2014, 292, 1913-1921.	1.0	42
25	Molecular Dynamics Changes Induced by Hydrostatic Pressure in a Supercooled Primary Alcohol. Journal of Physical Chemistry Letters, 2010, 1, 3249-3253.	2.1	41
26	Nematic order parameter as determined from dielectric relaxation data and other methods. Physical Chemistry Chemical Physics, 2003, 5, 924-928.	1.3	39
27	Phase transitions and chromium(<scp>iii</scp>) luminescence in perovskite-type [C ₂ H ₅ NH ₃][Na _{0.5} Cr _x Al _{0.5â^x} (HC) (x = 0, 0.025, 0.5), correlated with structural, dielectric and phonon properties. Physical Chemistry Chemical Physics. 2016. 18. 29629-29640.	CQQ) <sut< td=""><td>)>3{/sub>]</td></sut<>)>3{/sub>]
28	Test of the Einstein-Debye Relation in Supercooled Dibutylphthalate at Pressures up to 1.4ÂGPa. Physical Review Letters, 2003, 90, 175702.	2.9	37
29	Mode coupling behavior in glass-forming liquid crystalline isopentylcyanobiphenyl. Physical Review E, 2005, 71, 011508.	0.8	37
30	Dynamics crossover and dynamic scaling description in vitrification of orientationally disordered crystal. Physical Review B, 2006, 73, .	1.1	37
31	Dielectric relaxation behavior in antiferroelectric metal organic framework [(CH ₃) ₂ NH ₂][Fe ^{III} Fe ^{II} (HCOO) ₆] single crystals. Physical Chemistry Chemical Physics, 2016, 18, 8462-8467.	1.3	37
32	The peculiar behavior of the molecular dynamics of a glass-forming liquid confined in native porous materials – the role of negative pressure. Physical Chemistry Chemical Physics, 2016, 18, 23709-23714.	1.3	35
33	Mechanical, Thermal, and Electrical Energy Storage in a Single Working Body: Electrification and Thermal Effects upon Pressure-Induced Water Intrusion–Extrusion in Nanoporous Solids. ACS Applied Materials & Diterfaces, 2017, 9, 7044-7049.	4.0	35
34	On the origin of ferroelectric structural phases in perovskite-like metal–organic formate. Journal of Materials Chemistry C, 2018, 6, 9420-9429.	2.7	34
35	On the pressure dependence of the fragility of glycerol. Journal of Physics Condensed Matter, 2009, 21, 332101.	0.7	33
36	Evidence for critical-like behavior in ultraslowing glass-forming systems. Physical Review E, 2010, 82, 031501.	0.8	33

#	Article	IF	Citations
37	Effect of Compression on the Relationship between Viscosity and Dielectric Relaxation Time in Hydrogen-Bonded Primary Alcohols. Physical Review Letters, 2013, 110, 173004.	2.9	31
38	General rules prospected for the liquid fragility in various material groups and different thermodynamic conditions. Journal of Chemical Physics, 2014, 141, 134507.	1.2	31
39	Complex dielectric relaxation in supercooling and superpressing liquid-crystalline chiral isopentylcyanobiphenyl. Physical Review E, 2003, 68, 031705.	0.8	30
40	Dielectric relaxation in compressed glassy and orientationally disordered mixed crystals. Physical Review B, 2006, 74, .	1.1	29
41	How do high pressures change the Debye process of 4-methyl-3-heptanol?. Journal of Chemical Physics, 2013, 139, 064501.	1.2	29
42	High pressure study of molecular dynamics of protic ionic liquid lidocaine hydrochloride. Journal of Chemical Physics, 2012, 136, 224501.	1.2	28
43	How Different Molecular Architectures Influence the Dynamics of H-Bonded Structures in Glass-Forming Monohydroxy Alcohols. Journal of Physical Chemistry B, 2016, 120, 5744-5752.	1.2	28
44	Effect of glass structure on the dynamics of the secondary relaxation in diisobutyl and diisoctyl phthalates. Physical Review B, 2005, 72, .	1.1	27
45	Complex dynamics of supercoolingn-butylcyanobiphenyl (4CB). Physical Review E, 2005, 72, 031501.	0.8	27
46	Dielectric relaxation processes in water mixtures of tripropylene glycol. Journal of Chemical Physics, 2005, 123, 204506.	1.2	27
47	High pressure study on molecular mobility of leucrose. Journal of Chemical Physics, 2008, 129, 084501.	1.2	27
48	Influence of molecular weight on dynamic crossover temperature in linear polymers. Polymer, 2008, 49, 2918-2923.	1.8	26
49	Dielectric and magnetic permittivities of three new ceramic tungstates MPr2W2O10(M = Cd, Co, Mn). Philosophical Magazine, 2012, 92, 4167-4181.	0.7	26
50	Effect of Flexibility and Nanotriboelectrification on the Dynamic Reversibility of Water Intrusion into Nanopores: Pressure-Transmitting Fluid with Frequency-Dependent Dissipation Capability. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40842-40849.	4.0	25
51	Kinetics and Dynamics of the Curing System. High Pressure Studies. Macromolecules, 2014, 47, 4288-4297.	2.2	24
52	Fractional Debye–Stokes–Einstein behaviour in an ultraviscous nanocolloid: glycerol and silver nanoparticles. Soft Matter, 2015, 11, 5554-5562.	1.2	24
53	Synthesis and temperature-dependent studies of a perovskite-like manganese formate framework templated with protonated acetamidine. Dalton Transactions, 2017, 46, 8476-8485.	1.6	23
54	Phenyl Ring: A Steric Hindrance or a Source of Different Hydrogen Bonding Patterns in Self-Organizing Systems?. Journal of Physical Chemistry Letters, 2021, 12, 2142-2147.	2.1	23

#	Article	IF	CITATIONS
55	Dynamic Crossover of Water Relaxation in Aqueous Mixtures: Effect of Pressure. Journal of Physical Chemistry Letters, 2010, 1, 1170-1175.	2.1	22
56	Glassy dynamics and physical aging in fucose saccharides as studied by infrared- and broadband dielectric spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 20641.	1.3	22
57	Properties of (Bi1/9Na2/3)(Mn1/3Nb2/3)O3analysed within dielectric permittivity, conductivity, electric modulus and derivative techniques approach. Phase Transitions, 2006, 79, 447-460.	0.6	21
58	Communication: Thermodynamic scaling of the Debye process in primary alcohols. Journal of Chemical Physics, 2011, 134, 041103.	1.2	21
59	Molecular dynamics changes induced by solvent in 2-ethyl-1-hexanol. Physical Review E, 2011, 84, 031503.	0.8	21
60	Electrical and magnetic properties of CdRE2W2O10 tungstates (RE=Y, Nd, Sm, Gd–Er). Journal of Physics and Chemistry of Solids, 2013, 74, 86-93.	1.9	21
61	Dielectric and magnetic properties of CdMoO4:Gd3+ single crystal. Journal of Alloys and Compounds, 2014, 593, 230-234.	2.8	21
62	Interplay between structural static and dynamical parameters as a key factor to understand peculiar behaviour of associated liquids. Journal of Molecular Liquids, 2020, 319, 114084.	2.3	21
63	Positronium annihilation lifetimes and dielectric spectroscopy studies on diethyl phthalate: Phenomenological correlations and microscopic analyses in terms of the extended free volume model by Cohen-Grest. Journal of Chemical Physics, 2006, 124, 104505.	1.2	20
64	Pretransitional behavior of dielectric permittivity on approaching a clearing point in a mixture of nematogens with antagonistic configurations of dipoles. Physical Review E, 2001, 64, 051701.	0.8	19
65	Temperature behavior of secondary relaxation dynamics in tripropylene glycol. Physical Review B, 2005, 71, .	1.1	19
66	The importance of the activation volume for the description of the molecular dynamics of glass-forming liquids. Journal of Physics Condensed Matter, 2012, 24, 065105.	0.7	19
67	Temperature- and pressure-dependent studies of niccolite-type formate frameworks of [NH ₃ (CH ₂) ₄ NH ₃][M ₂ (HCOO) ₆] (M = Zn, Co, Fe). Physical Chemistry Chemical Physics, 2016, 18, 27613-27622.	1.3	19
68	Dielectric relaxation and anhydrous proton conduction in [C ₂ H ₅ NH ₃][Na _{0.5} Fe _{0.5} (HCOO) ₃] metal–organic frameworks. Dalton Transactions, 2017, 46, 3681-3687.	1.6	19
69	Impedance, dielectric, and magnetic properties study of La2CrMnO6 ceramics. Ceramics International, 2020, 46, 6368-6376.	2.3	19
70	Effect of Temperature and Pressure on Segmental Relaxation in Polymethylphenylsiloxane. Rubber Chemistry and Technology, 2003, 76, 1106-1115.	0.6	18
71	Hydrogen bonding and secondary relaxations in propylene glycol trimer. Physical Review B, 2005, 72, .	1.1	18

Electrical properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"
display="inline"> <mml:mrow> <mml:mrow>

#	Article	IF	CITATIONS
73	Impact of high pressure on the progress of polymerization of DGEBA cured with different amine hardeners: dielectric and DSC studies. RSC Advances, 2015, 5, 105934-105942.	1.7	18
74	Dielectric properties of two diastereoisomers of the arabinose and their equimolar mixture. Carbohydrate Research, 2009, 344, 2547-2553.	1.1	17
75	Effect of high hydrostatic pressure on the dielectric relaxation in a non-crystallizable monohydroxy alcohol in its supercooled liquid and glassy states. Journal of Chemical Physics, 2011, 135, 084507.	1.2	17
76	Verifying the Approximate Coinvariance of the α and Johari–Goldstein β Relaxation Times to Variations of Pressure and Temperature in Polyisoprene. Macromolecules, 2018, 51, 4435-4443.	2.2	17
77	Revisiting a Perovskite-like Copper-Formate Framework NH ₄ [Cu(HCOO) ₃]: Orderâ€"Disorder Transition Influenced by Jahn-Teller Distortion and above Room-Temperature Switching of the Nonlinear Optical Response between Two SHG-Active States. Journal of Physical Chemistry C. 2020, 124, 18714-18723.	1.5	17
78	Influence of Pressure on Quasielastic Scattering in Glasses: Relationship to the Boson Peak. Physical Review Letters, 2009, 102, 145502.	2.9	16
79	Combustion synthesis, structural, magnetic and dielectric properties of Gd3+-doped lead molybdato-tungstates. Journal of Advanced Ceramics, 2020, 9, 255-268.	8.9	15
80	Effect of thermodynamic history on secondary relaxation in glassy phenolphthalein-dimethyl-ether. Physical Review B, 2006, 73, .	1.1	14
81	Pressure dependence of the dielectric loss minimum slope for ten molecular liquids. Philosophical Magazine, 2008, 88, 4101-4108.	0.7	14
82	Influence of Pressure on Chain and Segmental Dynamics in Polyisoprene. Macromolecules, 2010, 43, 5845-5850.	2.2	14
83	Comment on "Slow Debye-type peak observed in the dielectric response of polyalcohols―[J. Chem. Phys. 132, 044504 (2010)]. Journal of Chemical Physics, 2011, 134, 037101.	1.2	14
84	Adam-Gibbs model in the density scaling regime and its implications for the configurational entropy scaling. Scientific Reports, 2015, 5, 13998.	1.6	14
85	Emergence of a new feature in the high pressure–high temperature relaxation spectrum of tri-propylene glycol. Journal of Chemical Physics, 2005, 122, 061102.	1.2	13
86	High pressure polymerization of glycidol. Kinetics studies. Polymer, 2014, 55, 1984-1990.	1.8	13
87	Impact of the Copper-Induced Local Framework Deformation on the Mechanism of Structural Phase Transition in [(CH ₃) ₂ NH ₂][Zn(HCOO) ₃] Hybrid Metal–Formate Perovskite. Journal of Physical Chemistry C, 2019, 123, 23594-23603.	1.5	12
88	Electric relaxation of superparamagnetic Gd-doped lead molybdato-tungstates. Ceramics International, 2019, 45, 4437-4447.	2.3	12
89	Relationship between Nanoscale Supramolecular Structure, Effectiveness of Hydrogen Bonds, and Appearance of Debye Process. Journal of Physical Chemistry C, 2020, 124, 2672-2679.	1.5	12
90	Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB). Journal of Physics Condensed Matter, 2010, 22, 235101.	0.7	11

#	Article	IF	CITATIONS
91	Dielectric Studies of the Mobility in Pentitols. Journal of Physical Chemistry B, 2011, 115, 1062-1066.	1.2	11
92	Role of hydrogen bonds and molecular structure in relaxation dynamics of pentiol isomers. Physical Review E, 2012, 85, 052501.	0.8	11
93	Dielectric permittivity of some novel copper/cobalt and rare-earth metal tungstates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 184, 14-17.	1.7	11
94	Role of entropy in the thermodynamic evolution of the time scale of molecular dynamics near the glass transition. Physical Review E, 2015, 91, 062305.	0.8	11
95	Relaxor state and electric relaxations induced by the addition of Bi and Mn ions to Pb(Zr0.70Ti0.30)O3 ceramics. Ceramics International, 2017, 43, 11699-11709.	2.3	11
96	Explanation of the difference in temperature and pressure dependences of the Debye relaxation and the structural \hat{l}_{\pm} -relaxation near T of monohydroxy alcohols. Chemical Physics, 2020, 530, 110617.	0.9	11
97	Essential meaning of high pressure measurements in discerning the properties of monohydroxy alcohols with a single phenyl group. Journal of Molecular Liquids, 2020, 305, 112863.	2.3	11
98	APEX Strategy Represented by Diels–Alder Cycloadditions—New Opportunities for the Syntheses of Functionalised PAHs. Chemistry - A European Journal, 2020, 26, 12150-12157.	1.7	11
99	Influence of molecular geometry on the formation, architecture and dynamics of H-bonded supramolecular associates in 1-phenyl alcohols. Journal of Molecular Liquids, 2021, 326, 115349.	2.3	11
100	Anomalous Narrowing of the Structural Relaxation Dispersion of Tris(dimethylsiloxy)phenylsilane at Elevated Pressures. Journal of Physical Chemistry B, 2006, 110, 7678-7681.	1.2	10
101	Secondary dielectric relaxation in decahydroisoquinoline–cyclohexane mixture. Journal of Non-Crystalline Solids, 2006, 352, 4685-4689.	1.5	10
102	Fragility versus activation volume: Insight into molecular dynamics of glass-forming hydrogen-bonded liquids. Physical Review E, 2011, 84, 052501.	0.8	10
103	Does the Johari–Goldstein β-Relaxation Exist in Polypropylene Glycols?. Macromolecules, 2015, 48, 4151-4157.	2.2	10
104	Breakdown of the Simple Arrhenius Law in the Normal Liquid State. Journal of Physical Chemistry Letters, 2018, 9, 1783-1787.	2.1	10
105	Molecular stiffness and aromatic ring position $\hat{a}\in$ Crucial structural factors in the self-assembly processes of phenyl alcohols. Journal of Molecular Liquids, 2021, 335, 116426.	2.3	10
106	DTA and Dielectric Studies of a Substance with the Nematic, Smectic A, and Smectic C Polymorphism at Ambient and Elevated Pressures. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2003, 58, 333-340.	0.7	9
107	Dielectric Properties of 4-methoxy-4'-cyanobiphenyl (1 OCB) in the Supercooled Isotropic and Nematic Phases. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2003, 58, 357-362.	0.7	9
108	Glassy dynamics in the isotropic phase of a smectogenic liquid crystalline compound. Physical Review E, 2011, 84, 031710.	0.8	9

#	Article	IF	CITATIONS
109	The Impact of the Length of Alkyl Chain on the Behavior of Benzyl Alcohol Homologous. The Interplay Between Dispersive and Hydrogen Bond Interactions. Physical Chemistry Chemical Physics, 2021, 23, 23796-23807.	1.3	9
110	Electrical features of ferroelectric (Ba0.83Ca0.17)TiO3 ceramics with diffused phase transition under pressure. Journal of Alloys and Compounds, 2021, 856, 158216.	2.8	8
111	Microscopic origin of secondary modes observed in decahydroisoquinoline. Journal of Molecular Structure, 2010, 975, 200-204.	1.8	7
112	Insight into understanding structural relaxation dynamics of [NH2NH3][Mn(HCOO)3] metal-organic formate. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 236-237, 24-31.	1.7	7
113	Glassy dynamics predicted by mutual role of free and activation volumes. Soft Matter, 2019, 15, 4656-4661.	1.2	7
114	Relaxing under pressure with a rigid niccolite formate framework. Journal of Materials Chemistry C, 2020, 8, 16736-16741.	2.7	7
115	Hydrostatic pressure influence on electric relaxation response of bismuth manganite ceramics. Journal of the American Ceramic Society, 2020, 103, 3732-3738.	1.9	7
116	Toward the Undiscovered Dielectric Properties of Hybrid Acetamidinium Manganese Formate under High Pressure. Journal of Physical Chemistry C, 2021, 125, 908-914.	1.5	7
117	Stable and reversible pressure-controlled dielectric switching in dicyanide hybrid perovskite. Applied Materials Today, 2021, 22, 100957.	2.3	7
118	How to align a nematic glassy phase – Different conditions – Different results. Journal of Molecular Liquids, 2019, 280, 314-318.	2.3	6
119	Conformational analysis and molecular dynamics of glass-forming aromatic thiacrown ethers. Physical Chemistry Chemical Physics, 2020, 22, 17948-17959.	1.3	6
120	Effect of Gd3+ Substitution on Thermoelectric Power Factor of Paramagnetic Co2+-Doped Calcium Molybdato-Tungstates. Materials, 2021, 14, 3692.	1.3	6
121	Aromaticity effect on supramolecular aggregation. Aromatic vs. cyclic monohydroxy alcohols. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 276, 121235.	2.0	6
122	Supramolecular Structure of Phenyl Derivatives of Butanol Isomers. Journal of Physical Chemistry B, 2022, 126, 3563-3571.	1.2	6
123	Inflection point in the Debye relaxation time of 2-butyl-1-octanol. Journal of Chemical Physics, 2018, 149, 214502.	1.2	5
124	Density Scaling Based Detection of Thermodynamic Regions of Complex Intermolecular Interactions Characterizing Supramolecular Structures. Scientific Reports, 2020, 10, 9316.	1.6	5
125	Is a Dissociation Process Underlying the Molecular Origin of the Debye Process in Monohydroxy Alcohols?. Journal of Physical Chemistry B, 2021, 125, 2960-2967.	1.2	5
126	Electrical and magnetic properties of ZnCr2S4 – nanoparticles. Journal of Alloys and Compounds, 2021, 861, 157973.	2.8	5

#	Article	IF	Citations
127	Systematic studies on the dynamics, intermolecular interactions and local structure in the alkyl and phenyl substituted butanol isomers. Journal of Molecular Liquids, 2022, 346, 117098.	2.3	5
128	Preliminary Studies on the Dielectric Permittivity in the Isotropic and Mesophase of Cholesteryl Oleyl Carbonate. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2002, 57, 126-128.	0.7	4
129	Anomalous behavior of the structural relaxation dispersion function of a carborane-containing siloxane. Journal of Physics Condensed Matter, 2010, 22, 415101.	0.7	4
130	Electrical and Magnetic Properties of CuEu ₂ O ₁₀ and Cu ₃ Eu ₂ W ₄ O ₁₈ . Solid State Phenomena, 0, 194, 104-107.	0.3	4
131	Role of intermolecular interactions and conformational changes in the polymorphism and vitrification process of 2,2′′-bis-substituted <i>para</i> -terphenyls. CrystEngComm, 2020, 22, 3164-3178.	1.3	4
132	Influence of hydrostatic pressure on electrical relaxation in non-homogeneous bismuth manganite - Lead titanate ceramics. Journal of Alloys and Compounds, 2021, 854, 157219.	2.8	4
133	Influence of interfacial stresses on electrical properties of bismuth manganite – lead titanate – epoxy composite. Ceramics International, 2021, 47, 34619-34619.	2.3	4
134	Electric Relaxation in Nb6VSb3O25-Ceramics. Acta Physica Polonica A, 2016, 129, 355-358.	0.2	4
135	New Strategy for the Synthesis of 3,4,5-trisubstituted Isoxazolines from Allyl Compounds. Current Organic Chemistry, 2014, 18, 2280-2296.	0.9	4
136	Note: New feedthrough insulation method for the dielectric spectroscopy under ultrahigh pressure conditions. Review of Scientific Instruments, 2010, 81, 066101.	0.6	3
137	Electrical properties of epoxy-glue/(Bi ₁₂ MnO ₂₀ â€"BiMn ₂ O ₅) composite. Journal of Composite Materials, 2018, 52, 1305-1315.	1.2	3
138	Dipole relaxation process and giant dielectric permittivity in Eu3+-doped CdMoO4 single crystal. Journal of Materiomics, 2021, 7, 845-857.	2.8	3
139	Simple Rules for Complex Near-Glass-Transition Phenomena in Medium-Sized Schiff Bases. International Journal of Molecular Sciences, 2022, 23, 5185.	1.8	3
140	Confined liquid crystaline 5CB in 2D Thermodynamic Space – Preliminary Dielectric Relaxation Study. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 229-238.	0.1	2
141	Glass-forming Schiff bases: Peculiar self-organizing systems with bifurcated hydrogen bonds. Journal of Molecular Liquids, 2021, , 118052.	2.3	2
142	Dipole Relaxation in Semiconducting Zn2 \hat{a} 'xMgxlnV3O11 Materials (Where x = 0.0, 0.4, 1.0, 1.6, and 2.0). Materials, 2020, 13, 2425.	1.3	1
143	Transformation of the Strongly Hydrogen Bonded System into van der Waals one Reflected in Molecular Dynamics. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 359-376.	0.5	1
144	Semiconducting Properties of Cu ₅ SbO ₆ . Acta Physica Polonica A, 2012, 122, 1105-1107.	0.2	1

#	Article	IF	CITATIONS
145	From ambient- to high-pressure dielectric response of perovskite formamidinium manganese formate. Journal of Materials Chemistry C, 2021, 9, 5740-5748.	2.7	O
146	Influence of Differences in Molecular structure on Behavior of and \hat{l}^2 Relaxation Processes in Diisooctyl Maleate. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 149-159.	0.1	0
147	Effect of Tantalum Substitution on Dielectric Constant of ZnSb2-xTaxO6 Solid Solution (x=0.0,0.1,0.25,0.75,1.6). Acta Physica Polonica A, 2019, 136, 633-636.	0.2	O