
and Artur Schmidtchen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2016663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial peptides: key components of the innate immune system. Critical Reviews in Biotechnology, 2012, 32, 143-171.	9.0	576
2	The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair and Regeneration, 2019, 27, 114-125.	3.0	409
3	Prevalence of chronic wounds in the general population: systematic review and meta-analysis of observational studies. Annals of Epidemiology, 2019, 29, 8-15.	1.9	328
4	The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Systematic Reviews, 2017, 6, 15.	5.3	323
5	Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Systematic Reviews, 2016, 5, 152.	5.3	257
6	Activation of the complement system generates antibacterial peptides. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16879-16884.	7.1	202
7	Evaluation of Strategies for Improving Proteolytic Resistance of Antimicrobial Peptides by Using Variants of EFK17, an Internal Segment of LL-37. Antimicrobial Agents and Chemotherapy, 2009, 53, 593-602.	3.2	171
8	Antimicrobial activities of heparinâ€binding peptides. FEBS Journal, 2004, 271, 1219-1226.	0.2	167
9	Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. Journal of Colloid and Interface Science, 2016, 475, 161-170.	9.4	142
10	Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial αâ€defensin. Molecular Microbiology, 2001, 39, 708-713.	2.5	138
11	Interaction between amphiphilic peptides and phospholipid membranes. Current Opinion in Colloid and Interface Science, 2010, 15, 467-478.	7.4	134
12	Proteolysis of Human Thrombin Generates Novel Host Defense Peptides. PLoS Pathogens, 2010, 6, e1000857.	4.7	131
13	Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2667-2680.	2.6	129
14	Effect of hydrophobic modifications in antimicrobial peptides. Advances in Colloid and Interface Science, 2014, 205, 265-274.	14.7	127
15	Boosting Antimicrobial Peptides by Hydrophobic Oligopeptide End Tags. Journal of Biological Chemistry, 2009, 284, 17584-17594.	3.4	122
16	SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. Journal of Molecular Cell Biology, 2021, 12, 916-932.	3.3	121
17	Incorporation of antimicrobial compounds in mesoporous silica film monolith. Biomaterials, 2009, 30, 5729-5736.	11.4	112
18	A dual-action peptide-containing hydrogel targets wound infection and inflammation. Science Translational Medicine, 2020, 12, .	12.4	105

#	Article	IF	CITATIONS
19	Different Procoagulant Activity of Therapeutic Mesenchymal Stromal Cells Derived from Bone Marrow and Placental Decidua. Stem Cells and Development, 2015, 24, 2269-2279.	2.1	104
20	Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth. Microbial Pathogenesis, 2003, 34, 47-55.	2.9	100
21	Domain 5 of High Molecular Weight Kininogen Is Antibacterial. Journal of Biological Chemistry, 2005, 280, 34832-34839.	3.4	94
22	Effect of Peptide Length on the Interaction between Consensus Peptides and DOPC/DOPA Bilayers. Langmuir, 2006, 22, 5042-5050.	3.5	92
23	Pathological Conditions Involving Extracellular Hemoglobin: Molecular Mechanisms, Clinical Significance, and Novel Therapeutic Opportunities for α ₁ -Microglobulin. Antioxidants and Redox Signaling, 2012, 17, 813-846.	5.4	87
24	End-Tagging of Ultra-Short Antimicrobial Peptides by W/F Stretches to Facilitate Bacterial Killing. PLoS ONE, 2009, 4, e5285.	2.5	86
25	In Silico Identification and Biological Evaluation of Antimicrobial Peptides Based on Human Cathelicidin LL-37. Antimicrobial Agents and Chemotherapy, 2006, 50, 2983-2989.	3.2	82
26	Antimicrobial Activity of Human Prion Protein Is Mediated by Its N-Terminal Region. PLoS ONE, 2009, 4, e7358.	2.5	73
27	Antimicrobial peptides derived from growth factors. Growth Factors, 2007, 25, 60-70.	1.7	71
28	Membrane selectivity by W-tagging of antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1081-1091.	2.6	71
29	Skin barrier impairment correlates with cutaneous <i>Staphylococcus aureus</i> colonization and sensitization to skin-associated microbial antigens in adult patients with atopic dermatitis. International Journal of Dermatology, 2014, 53, 27-33.	1.0	71
30	Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Scientific Reports, 2017, 7, 8689.	3.3	70
31	Highly Selective End-Tagged Antimicrobial Peptides Derived from PRELP. PLoS ONE, 2011, 6, e16400.	2.5	68
32	Preservation of Antimicrobial Properties of Complement Peptide C3a, from Invertebrates to Humans. Journal of Biological Chemistry, 2007, 282, 2520-2528.	3.4	67
33	Rational Design of Antimicrobial C3a Analogues with Enhanced Effects against Staphylococci Using an Integrated Structure and Function-Based Approach. Biochemistry, 2008, 47, 9057-9070.	2.5	64
34	Chemerin Is an Antimicrobial Agent in Human Epidermis. PLoS ONE, 2013, 8, e58709.	2.5	64
35	Need for Improved Definition of â€Chronic Wounds―in Clinical Studies. Acta Dermato-Venereologica, 2018, 98, 157-158.	1.3	64
36	Bacterial killing by heparin-binding peptides from PRELP and thrombospondin. Matrix Biology, 2006, 25, 294-300.	3.6	63

#	Article	IF	CITATIONS
37	Histidine-Rich Glycoprotein Protects from Systemic Candida Infection. PLoS Pathogens, 2008, 4, e1000116.	4.7	63
38	Structure-Activity Studies and Therapeutic Potential of Host Defense Peptides of Human Thrombin. Antimicrobial Agents and Chemotherapy, 2011, 55, 2880-2890.	3.2	63
39	An Electrochemical Study into the Interaction between Complement-Derived Peptides and DOPC Mono- and Bilayers. Langmuir, 2008, 24, 208-216.	3.5	60
40	Antimicrobial activity of fibrinogen and fibrinogen-derived peptides – a novel link between coagulation and innate immunity. Thrombosis and Haemostasis, 2013, 109, 930-939.	3.4	60
41	Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses. Nature Communications, 2016, 7, 11567.	12.8	59
42	Membrane interactions of microgels as carriers of antimicrobial peptides. Journal of Colloid and Interface Science, 2018, 513, 141-150.	9.4	57
43	C-terminal Peptides of Tissue Factor Pathway Inhibitor Are Novel Host Defense Molecules. Journal of Biological Chemistry, 2010, 285, 28387-28398.	3.4	56
44	Effects of PEGylation on Membrane and Lipopolysaccharide Interactions of Host Defense Peptides. Biomacromolecules, 2014, 15, 1337-1345.	5.4	56
45	Thrombin and Plasmin Alter the Proteome of Neutrophil Extracellular Traps. Frontiers in Immunology, 2018, 9, 1554.	4.8	55
46	Effects of topology, length, and charge on the activity of a kininogen-derived peptide on lipid membranes and bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 715-727.	2.6	53
47	Host Defense Peptides of Thrombin Modulate Inflammation and Coagulation in Endotoxin-Mediated Shock and Pseudomonas aeruginosa Sepsis. PLoS ONE, 2012, 7, e51313.	2.5	52
48	Studies on the Proteome of Human Hair - Identification of Histones and Deamidated Keratins. Scientific Reports, 2018, 8, 1599.	3.3	52
49	Up-Regulation of A1M/α1-Microglobulin in Skin by Heme and Reactive Oxygen Species Gives Protection from Oxidative Damage. PLoS ONE, 2011, 6, e27505.	2.5	50
50	Aggregation of thrombin-derived C-terminal fragments as a previously undisclosed host defense mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4213-E4222.	7.1	49
51	Antifungal activity of C3a and C3a-derived peptides against Candida. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 346-353.	2.6	47
52	Composition Effect on Peptide Interaction with Lipids and Bacteria: Variants of C3a Peptide CNY21. Biophysical Journal, 2007, 92, 87-98.	0.5	47
53	Differential Proteinase Expression by Pseudomonas aeruginosa Derived from Chronic Leg Ulcers. Acta Dermato-Venereologica, 2001, 81, 406-409.	1.3	46
54	Tryptophan end-tagging of antimicrobial peptides for increased potency against Pseudomonas aeruginosa. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 800-808.	2.4	46

#	Article	IF	CITATIONS
55	Role of Aromatic Amino Acids in Lipopolysaccharide and Membrane Interactions of Antimicrobial Peptides for Use in Plant Disease Control. Journal of Biological Chemistry, 2016, 291, 13301-13317.	3.4	46
56	Sensitization to Skin-associated Microorganisms in Adult Patients with Atopic Dermatitis is of Importance for Disease Severity. Acta Dermato-Venereologica, 2013, 93, 340-345.	1.3	44
57	The Thrombin-Derived Host Defense Peptide GKY25 Inhibits Endotoxin-Induced Responses through Interactions with Lipopolysaccharide and Macrophages/Monocytes. Journal of Immunology, 2015, 194, 5397-5406.	0.8	44
58	Structural basis for endotoxin neutralisation and anti-inflammatory activity of thrombin-derived C-terminal peptides. Nature Communications, 2018, 9, 2762.	12.8	43
59	Peptide interactions with bacterial lipopolysaccharides. Current Opinion in Colloid and Interface Science, 2013, 18, 381-392.	7.4	42
60	SufA – a novel subtilisin-like serine proteinase of Finegoldia magna. Microbiology (United Kingdom), 2007, 153, 4208-4218.	1.8	41
61	Oligotryptophan-tagged antimicrobial peptides and the role of the cationic sequence. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1916-1923.	2.6	40
62	Surgical Site Infections in Dermatologic Surgery. Dermatologic Surgery, 2015, 41, 537-549.	0.8	39
63	The C-Terminal Sequence of Several Human Serine Proteases Encodes Host Defense Functions. Journal of Innate Immunity, 2011, 3, 471-482.	3.8	38
64	A major population of mucosal memory CD4+ T cells, coexpressing IL-18Rα and DR3, display innate lymphocyte functionality. Mucosal Immunology, 2015, 8, 545-558.	6.0	38
65	Membrane and lipopolysaccharide interactions of C-terminal peptides from S1 peptidases. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2244-2251.	2.6	37
66	Pseudomonas aeruginosa-induced infection and degradation of human wound fluid and skin proteins ex vivo are eradicated by a synthetic cationic polymer. Journal of Antimicrobial Chemotherapy, 2004, 54, 772-779.	3.0	36
67	The TFPI-2 Derived Peptide EDC34 Improves Outcome of Gram-Negative Sepsis. PLoS Pathogens, 2013, 9, e1003803.	4.7	36
68	Peptide-Loaded Microgels as Antimicrobial and Anti-Inflammatory Surface Coatings. Biomacromolecules, 2018, 19, 3456-3466.	5.4	35
69	Lipopolysaccharide Interactions of C-Terminal Peptides from Human Thrombin. Biomacromolecules, 2013, 14, 1482-1492.	5.4	34
70	Proteolytic Activation Transforms Heparin Cofactor II into a Host Defense Molecule. Journal of Immunology, 2013, 190, 6303-6310.	0.8	33
71	A Thermodynamic Funnel Drives Bacterial Lipopolysaccharide Transfer in the TLR4 Pathway. Structure, 2018, 26, 1151-1161.e4.	3.3	32
72	Importance of lipopolysaccharide aggregate disruption for the anti-endotoxic effects of heparin cofactor II peptides. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2709-2719.	2.6	31

#	Article	IF	CITATIONS
73	A novel derivative of the fungal antimicrobial peptide plectasin is active against Mycobacterium tuberculosis. Tuberculosis, 2018, 113, 231-238.	1.9	31
74	Heparin binding protein is increased in chronic leg ulcer fluid and released from granulocytes by secreted products of Pseudomonas aeruginosa. Thrombosis and Haemostasis, 2004, 92, 281-287.	3.4	30
75	A Descriptive Study of Bacterial Load of Full-Thickness Surgical Wounds in Dermatologic Surgery. Dermatologic Surgery, 2011, 37, 1014-1022.	0.8	30
76	Thymic stromal lymphopoietin exerts antimicrobial activities. Experimental Dermatology, 2011, 20, 1004-1010.	2.9	30
77	Effects of Peptide Secondary Structure on the Interaction with Oppositely Charged Microgels. Biomacromolecules, 2011, 12, 419-424.	5.4	29
78	A Peptide of Heparin Cofactor II Inhibits Endotoxin-Mediated Shock and Invasive Pseudomonas aeruginosa Infection. PLoS ONE, 2014, 9, e102577.	2.5	28
79	Peptide-coated polyurethane material reduces wound infection and inflammation. Acta Biomaterialia, 2021, 128, 314-331.	8.3	27
80	Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 23832-23842.	2.8	26
81	Eotaxin-3 (CCL26) exerts innate host defense activities that are modulated by mast cell proteases. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 161-170.	5.7	25
82	Influence of pH on the activity of thrombin-derived antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2374-2384.	2.6	25
83	Interaction of Laponite with Membrane Components—Consequences for Bacterial Aggregation and Infection Confinement. ACS Applied Materials & Interfaces, 2019, 11, 15389-15400.	8.0	24
84	Thrombin-derived C-terminal fragments aggregate and scavenge bacteria and their proinflammatory products. Journal of Biological Chemistry, 2020, 295, 3417-3430.	3.4	24
85	Development of an Experimental Ex Vivo Wound Model to Evaluate Antimicrobial Efficacy of Topical Formulations. International Journal of Molecular Sciences, 2021, 22, 5045.	4.1	23
86	Tissue Factor Pathway Inhibitor 2 Is Found in Skin and Its C-Terminal Region Encodes for Antibacterial Activity. PLoS ONE, 2012, 7, e52772.	2.5	23
87	Mycosis Fungoides: A Retrospective Study of 44 Swedish Cases. Acta Dermato-Venereologica, 2016, 96, 669-673.	1.3	22
88	Pronounced peptide selectivity for melanoma through tryptophan end-tagging. Scientific Reports, 2016, 6, 24952.	3.3	22
89	Collagen VI Contains Multiple Host Defense Peptides with Potent In Vivo Activity. Journal of Immunology, 2018, 201, 1007-1020.	0.8	22
90	Antibacterial Activity of the Contact and Complement Systems Is Blocked by SIC, a Protein Secreted by Streptococcus pyogenes. Journal of Biological Chemistry, 2011, 286, 1331-1340.	3.4	21

#	Article	IF	CITATIONS
91	Degradable dendritic nanogels as carriers for antimicrobial peptides. Journal of Colloid and Interface Science, 2019, 554, 592-602.	9.4	21
92	Effects of peptide hydrophobicity on its incorporation in phospholipid membranes — an NMR and ellipsometry study. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 244-252.	2.6	19
93	Antimicrobial Effects of Helix D-derived Peptides of Human Antithrombin III. Journal of Biological Chemistry, 2014, 289, 29790-29800.	3.4	19
94	The Epidermal Growth Factor Receptor Is a Regulator of Epidermal Complement Component Expression and Complement Activation. Journal of Immunology, 2014, 192, 3355-3364.	0.8	19
95	Anti-endotoxic and antibacterial effects of a dermal substitute coated with host defense peptides. Biomaterials, 2015, 53, 415-425.	11.4	18
96	(Lipo)polysaccharide interactions of antimicrobial peptides. Journal of Colloid and Interface Science, 2015, 449, 136-142.	9.4	18
97	Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo. Scientific Reports, 2017, 7, 13136.	3.3	18
98	Antimicrobial activity of peptides derived from human <i>ß</i> â€amyloid precursor protein. Journal of Peptide Science, 2012, 18, 183-191.	1.4	17
99	p33 (gC1q Receptor) Prevents Cell Damage by Blocking the Cytolytic Activity of Antimicrobial Peptides. Journal of Immunology, 2013, 191, 5714-5721.	0.8	17
100	Conformational Aspects of High Content Packing of Antimicrobial Peptides in Polymer Microgels. ACS Applied Materials & Interfaces, 2017, 9, 40094-40106.	8.0	17
101	Saliva induces expression of antimicrobial peptides and promotes intracellular killing of bacteria in keratinocytes by epidermal growth factor receptor transactivation. British Journal of Dermatology, 2017, 176, 403-412.	1.5	16
102	Bacteria Display Differential Growth and Adhesion Characteristics on Human Hair Shafts. Frontiers in Microbiology, 2018, 9, 2145.	3.5	16
103	Human thrombin-derived host defense peptides inhibit neutrophil recruitment and tissue injury in severe acute pancreatitis. American Journal of Physiology - Renal Physiology, 2014, 307, G914-G921.	3.4	15
104	Can dressings soaked with polyhexanide reduce bacterial loads in full-thickness skin grafting? A randomized controlled trial. Journal of the American Academy of Dermatology, 2016, 75, 1221-1228.e4.	1.2	15
105	NLF20: an antimicrobial peptide with therapeutic potential against invasivePseudomonas aeruginosainfection. Journal of Antimicrobial Chemotherapy, 2016, 71, 170-180.	3.0	15
106	Multiscale modeling of innate immune receptors: Endotoxin recognition and regulation by host defense peptides. Pharmacological Research, 2019, 147, 104372.	7.1	15
107	The role of full-length apoE in clearance of Gram-negative bacteria and their endotoxins. Journal of Lipid Research, 2021, 62, 100086.	4.2	15
108	SufA – a bacterial enzyme that cleaves fibrinogen and blocks fibrin network formation. Microbiology (United Kingdom), 2009, 155, 238-248.	1.8	15

AND ARTUR SCHMIDTCHEN

#	Article	IF	CITATIONS
109	Antifungal Activities of Peptides Derived from Domain 5 of High-Molecular-Weight Kininogen. International Journal of Peptides, 2011, 2011, 1-11.	0.7	14
110	Inflammation Biomarkers and Correlation to Wound Status After Full-Thickness Skin Grafting. Frontiers in Medicine, 2019, 6, 159.	2.6	14
111	Tryptophan end-tagging for promoted lipopolysaccharide interactions and anti-inflammatory effects. Scientific Reports, 2017, 7, 212.	3.3	13
112	Thrombin-Derived Host-Defense Peptides Modulate Monocyte/Macrophage Inflammatory Responses to Gram-Negative Bacteria. Frontiers in Immunology, 2017, 8, 843.	4.8	13
113	Bioinformatic Analysis of the Wound Peptidome Reveals Potential Biomarkers and Antimicrobial Peptides. Frontiers in Immunology, 2020, 11, 620707.	4.8	11
114	Experimental Model of Pulmonary Inflammation Induced by SARS-CoV-2 Spike Protein and Endotoxin. ACS Pharmacology and Translational Science, 2022, 5, 141-148.	4.9	11
115	Effects of single amino acid substitutions on peptide interaction with lipid membranes and bacteria–variants of GKE21, an internal sequence from human LL-37. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 65-71.	4.7	9
116	An antimicrobial helix A-derived peptide of heparin cofactor II blocks endotoxin responses in vivo. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1225-1234.	2.6	9
117	Effects of linear amphiphilicity on membrane interactions of C-terminal thrombin peptides. RSC Advances, 2014, 4, 37582-37591.	3.6	9
118	Toll-like Receptor 3 Agonist, Polyinosinic-polycytidylic Acid, Upregulates Carbonic Anhydrase II in Human Keratinocytes. Acta Dermato-Venereologica, 2018, 98, 762-765.	1.3	9
119	Concentration- and pH-Dependent Oligomerization of the Thrombin-Derived C-Terminal Peptide TCP-25. Biomolecules, 2020, 10, 1572.	4.0	9
120	Thrombin-derived host defence peptide modulates neutrophil rolling and migration in vitro and functional response in vivo. Scientific Reports, 2017, 7, 11201.	3.3	7
121	Cell-Free DNA Promotes Thrombin Autolysis and Generation of Thrombin-Derived C-Terminal Fragments. Frontiers in Immunology, 2021, 12, 593020.	4.8	7
122	Identification of Antibacterial Components in Human Hair Shafts. Acta Dermato-Venereologica, 2018, 98, 708-710.	1.3	6
123	A C-terminal peptide of TFPI-1 facilitates cytosolic delivery of nucleic acid cargo into mammalian cells. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183093.	2.6	6
124	Method development and characterisation of the low-molecular-weight peptidome of human wound fluids. ELife, 2021, 10, .	6.0	6
125	Probing Skin Barrier Recovery on Molecular Level Following Acute Wounds: An In Vivo/Ex Vivo Study on Pigs. Biomedicines, 2021, 9, 360.	3.2	5
126	The Multiple Faces of Host Defence Peptides and Proteins. Journal of Innate Immunity, 2012, 4, 325-326.	3.8	4

AND ARTUR SCHMIDTCHEN

#	Article	IF	CITATIONS
127	TFPI-2 Protects Against Gram-Negative Bacterial Infection. Frontiers in Immunology, 2018, 9, 2072.	4.8	3
128	Variability in the diagnosis of surgicalâ€site infections after fullâ€thickness skin grafting: an international survey. British Journal of Dermatology, 2019, 180, 1169-1175.	1.5	3
129	Thrombin-Derived C-Terminal Peptide Reduces <i>Candida</i> -Induced Inflammation and Infection <i>In Vitro</i> and <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2021, 65, e0103221.	3.2	3
130	Real-time in vivo Imaging of LPS-induced Local Inflammation and Drug Deposition in NF-κB Reporter Mice. Bio-protocol, 2020, 10, e3724.	0.4	3
131	Idiopathic Angioedema and Urticarial Vasculitis in a Patient with a History of Acquired Haemophilia. Acta Dermato-Venereologica, 2015, 95, 227-228.	1.3	2
132	Carbonic anhydrases in human keratinocytes and their regulation by allâ€ <i>trans</i> retinoic acid and 1α,25â€dihydroxyvitamin D ₃ . Experimental Dermatology, 2019, 28, 976-980.	2.9	2
133	ECF receptor: role for innate immunity during wound healing in human skin. Expert Review of Dermatology, 2008, 3, 587-593.	0.3	1
134	Differential Internalization of Thrombin-Derived Host Defense Peptides into Monocytes and Macrophages. Journal of Innate Immunity, 2022, 14, 418-432.	3.8	1
135	A New Look for ActaDV with More Rapid Publication. Acta Dermato-Venereologica, 2017, 97, 3.	1.3	0
136	Changes in Editorial Board of Acta Dermato-Venereologica. Acta Dermato-Venereologica, 2018, 98, 828.	1.3	0
137	Change of Editors and other News from ActaDV. Acta Dermato-Venereologica, 2018, 98, 3-4.	1.3	0
138	Surgicalâ€site infections after fullâ€ŧhickness skin grafting. British Journal of Dermatology, 2019, 180, e161.	1.5	0
139	Rapid in vitro and in vivo Evaluation of Antimicrobial Formulations Using Bioluminescent Pathogenic Bacteria. Bio-protocol, 2022, 12, e4302.	0.4	0