Weidong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/201646/publications.pdf

Version: 2024-02-01

		172457	206112
67	2,519	29	48
papers	citations	h-index	g-index
68	68	68	2418
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A novel alphahypovirus that infects the fungal plant pathogen Sclerotinia sclerotiorum. Archives of Virology, 2022, 167, 213-217.	2.1	1
2	<i>Botrytis cinerea</i> ? <scp>BcSSP2</scp> protein is a late infection phase, cytotoxic effector. Environmental Microbiology, 2022, 24, 3420-3435.	3.8	7
3	Genome Sequence of Sclerotinia sclerotiorum Hypovirulence-Associated DNA Virus 1 Found in the Fungus Penicillium olsonii Isolated from Washington State, USA. Microbiology Resource Announcements, 2022, , e0001922.	0.6	1
4	A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nature Communications, 2022, 13, 2213.	12.8	25
5	Sclerotinia sclerotiorumÂSsCut1 Modulates Virulence and Cutinase Activity. Journal of Fungi (Basel,) Tj ETQq1 1 (0.784314 r	rgBT Over <mark>los</mark>
6	<i>Ascochyta rabiei</i> : A threat to global chickpea production. Molecular Plant Pathology, 2022, 23, 1241-1261.	4.2	16
7	Chickpea Seed Rot and Damping-Off Caused by Metalaxyl-Resistant <i>Pythium ultimum</i> and Its Management with Ethaboxam. Plant Disease, 2021, 105, 1728-1737.	1.4	6
8	A novel antisense long nonâ€coding <scp>RNA</scp> participates in asexual and sexual reproduction by regulating the expression of <scp><i>GzmetE</i></scp> in <scp><i>Fusarium graminearum</i></scp> . Environmental Microbiology, 2021, 23, 4939-4955.	3.8	6
9	Fungicide Treatments to Control Seed-borne Fungi of Sunflower Seeds. Pathogens, 2020, 9, 29.	2.8	13
10	Competitive saprophytic ability of the hypovirulent isolate QT5-19 of Botrytis cinerea and its importance in biocontrol of necrotrophic fungal pathogens. Biological Control, 2020, 142, 104182.	3.0	11
11	Genome-Wide Identification and Expression Analysis of the bZIP Transcription Factors in the Mycoparasite Coniothyrium minitans. Microorganisms, 2020, 8, 1045.	3.6	12
12	The D-galacturonic acid catabolic pathway genes differentially regulate virulence and salinity response in Sclerotinia sclerotiorum. Fungal Genetics and Biology, 2020, 145, 103482.	2.1	7
13	An effector of a necrotrophic fungal pathogen targets the calciumâ€sensing receptor in chloroplasts to inhibit host resistance. Molecular Plant Pathology, 2020, 21, 686-701.	4.2	55
14	A Simple and Effective Technique for Production of Pycnidia and Pycnidiospores by <i>Macrophomina phaseolina</i> . Plant Disease, 2020, 104, 1183-1187.	1.4	10
15	Genetic Diversity and Recombination in the Plant Pathogen Sclerotinia sclerotiorum Detected in Sri Lanka. Pathogens, 2020, 9, 306.	2.8	5
16	Defective RNA of a Novel Mycovirus with High Transmissibility Detrimental to Biocontrol Properties of Trichoderma spp Microorganisms, 2019, 7, 507.	3.6	19
17	The cyclase-associated protein ChCAP is important for regulation of hyphal growth, appressorial development, penetration, pathogenicity, conidiation, intracellular cAMP level, and stress tolerance in Colletotrichum higginsianum. Plant Science, 2019, 283, 1-10.	3.6	9
18	Identification of a Polyketide Synthase Gene Responsible for Ascochitine Biosynthesis in Ascochyta fabae and Its Abrogation in Sister Taxa. MSphere, 2019, 4, .	2.9	6

#	Article	IF	CITATIONS
19	Phytotoxic Metabolites Produced by Legume-Associated Ascochyta and Its Related Genera in the Dothideomycetes. Toxins, 2019, 11, 627.	3.4	19
20	Registration of â€~Royal' Chickpea. Journal of Plant Registrations, 2019, 13, 123-127.	0.5	4
21	A Novel Partitivirus in the Hypovirulent Isolate QT5-19 of the Plant Pathogenic Fungus Botrytis cinerea. Viruses, 2019, 11, 24.	3.3	39
22	Sclerotinia sclerotiorum populations: clonal or recombining?. Tropical Plant Pathology, 2019, 44, 23-31.	1.5	17
23	Assessing the contribution of ethaboxam in seed treatment cocktails for the management of metalaxyl-resistant Pythium ultimum var. ultimum in Pacific Northwest spring wheat production. Crop Protection, 2019, 115, 7-12.	2.1	22
24	A ceratoâ€platanin protein SsCP1 targets plant PR1 and contributes to virulence of ⟨i⟩Sclerotinia sclerotiorum⟨/i⟩. New Phytologist, 2018, 217, 739-755.	7.3	211
25	Contrast Between Orange- and Black-Colored Sclerotial Isolates of Botrytis cinerea: Melanogenesis and Ecological Fitness. Plant Disease, 2018, 102, 428-436.	1.4	19
26	Sclerotinia minor Endornavirus 1, a Novel Pathogenicity Debilitation-Associated Mycovirus with a Wide Spectrum of Horizontal Transmissibility. Viruses, 2018, 10, 589.	3.3	30
27	<i>Sclerotinia sclerotiorum</i> : An Evaluation of Virulence Theories. Annual Review of Phytopathology, 2018, 56, 311-338.	7.8	74
28	Two Novel Hypovirulence-Associated Mycoviruses in the Phytopathogenic Fungus Botrytis cinerea: Molecular Characterization and Suppression of Infection Cushion Formation. Viruses, 2018, 10, 254.	3.3	81
29	Production of the antibiotic secondary metabolite solanapyrone A by the fungal plant pathogen <i>Ascochyta rabiei</i> during fruiting body formation in saprobic growth. Environmental Microbiology, 2017, 19, 1822-1835.	3.8	13
30	Reveromycins A and B from Streptomyces sp. 3–10: Antifungal Activity against Plant Pathogenic Fungi In vitro and in a Strawberry Food Model System. Frontiers in Microbiology, 2017, 8, 550.	3.5	42
31	A Single-Nucleotide Deletion in the Transcription Factor Gene bcsmr1 Causes Sclerotial-Melanogenesis Deficiency in Botrytis cinerea. Frontiers in Microbiology, 2017, 8, 2492.	3.5	18
32	Pulse crop diseases in the Pacific Northwest. Crops & Soils, 2016, 49, 20-26.	0.2	4
33	Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera. Scientific Reports, 2016, 6, 20192.	3.3	29
34	Direct repeat-mediated DNA deletion of the mating type MAT1-2 genes results in unidirectional mating type switching in Sclerotinia trifoliorum. Scientific Reports, 2016, 6, 27083.	3.3	17
35	Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Scientific Reports, 2016, 6, 24325.	3.3	41
36	Characterization of the Mycelial Compatibility Groups and Mating Type Alleles in Populations of Sclerotinia minor in Central China. Plant Disease, 2016, 100, 2313-2318.	1.4	6

#	Article	IF	Citations
37	Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biological Control, 2016, 101, 31-38.	3.0	63
38	Characterization of three mycoviruses co-infecting the plant pathogenic fungus Sclerotinia nivalis. Virus Research, 2016, 223, 28-38.	2.2	23
39	Comparative Transcriptome Analysis between the Fungal Plant PathogensSclerotinia sclerotiorumandS. trifoliorumUsing RNA Sequencing. Journal of Heredity, 2016, 107, 163-172.	2.4	9
40	<scp>pH</scp> dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalateâ€minus mutants of <scp><i>S</i></scp>	3.8	85
41	<scp>CmpacC</scp> regulates mycoparasitism, oxalate degradation and antifungal activity in the mycoparasitic fungus <scp><i>C</i></scp> <i>oniothyrium minitans</i> . Environmental Microbiology, 2015, 17, 4711-4729.	3.8	35
42	Development of PCR-Based Assays for Detecting and Differentiating Three Species of <i>Botrytis</i> Infecting Broad Bean. Plant Disease, 2015, 99, 691-698.	1.4	40
43	Functional Analyses of the Diels-Alderase Gene <i>sol5</i> of <i>Ascochyta rabiei</i> and <i>Alternaria solani</i> Indicate that the Solanapyrone Phytotoxins Are Not Required for Pathogenicity. Molecular Plant-Microbe Interactions, 2015, 28, 482-496.	2.6	43
44	Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of Verticillium wilt of cotton. Plant and Soil, 2015, 392, 101-114.	3.7	45
45	A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei. Eukaryotic Cell, 2015, 14, 1102-1113.	3.4	15
46	Achievements and Challenges in Legume Breeding for Pest and Disease Resistance. Critical Reviews in Plant Sciences, 2015, 34, 195-236.	5.7	153
47	Degradation of oxalic acid by the mycoparasite <i><scp>C</scp>oniothyrium minitans</i> plays an important role in interacting with <i><scp>S</scp>clerotinia sclerotiorum</i> Environmental Microbiology, 2014, 16, 2591-2610.	3.8	57
48	Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biological Control, 2014, 72, 98-108.	3.0	136
49	<i>Sclerotinia sclerotiorum</i> Populations Infecting Canola from China and the United States Are Genetically and Phenotypically Distinct. Phytopathology, 2013, 103, 750-761.	2.2	59
50	Inheritance and Linkage Map Positions of Genes Conferring Agromorphological Traits in <i>Lens culinaris</i> Medik International Journal of Agronomy, 2013, 2013, 1-9.	1.2	25
51	Random T-DNA Mutagenesis Identifies a Cu/Zn Superoxide Dismutase Gene as a Virulence Factor of <i>Sclerotinia sclerotiorum</i> . Molecular Plant-Microbe Interactions, 2013, 26, 431-441.	2.6	55
52	Validation of molecular markers for resistance among Pakistani chickpea germplasm to races of Fusarium oxysporum f. sp. ciceris. European Journal of Plant Pathology, 2012, 132, 237-244.	1.7	6
53	Ascospore dimorphism-associated mating types of Sclerotinia trifoliorum equally capable of inducing mycelial infection on chickpea plants. Australasian Plant Pathology, 2011, 40, 648-655.	1.0	3
54	Inheritance and Linkage Map Positions of Genes Conferring Resistance to Stemphylium Blight in Lentil. Crop Science, 2010, 50, 1831-1839.	1.8	59

#	Article	IF	CITATIONS
55	Identification of markers associated with genes for rust resistance in Lens culinaris Medik Euphytica, 2010, 175, 261-265.	1.2	44
56	A BAC/BIBAC-based physical map of chickpea, Cicer arietinum L. BMC Genomics, 2010, 11, 501.	2.8	29
57	Didymella pisi sp. nov., the teleomorph of Ascochyta pisi. Mycological Research, 2009, 113, 391-400.	2.5	65
58	Stem and Crown Rot of Chickpea in California Caused by Sclerotinia trifoliorum. Plant Disease, 2008, 92, 917-922.	1.4	36
59	Towards identifying pathogenic determinants of the chickpea pathogen Ascochyta rabiei. European Journal of Plant Pathology, 2007, 119, 3-12.	1.7	11
60	Resistance to ascochyta blights of cool season food legumes. European Journal of Plant Pathology, 2007, 119, 135-141.	1.7	31
61	Resistance to ascochyta blights of cool season food legumes. , 2007, , 135-141.		3
62	Towards identifying pathogenic determinants of the chickpea pathogen Ascochyta rabiei., 2007,, 3-12.		0
63	Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica, 2006, 147, 223-253.	1.2	154
64	Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation. Current Genetics, 2006, 49, 272-280.	1.7	20
65	Genetics of Chickpea Resistance to Five Races of Fusarium Wilt and a Concise Set of Race Differentials for Fusarium oxysporum f. sp. ciceris. Plant Disease, 2005, 89, 385-390.	1.4	125
66	Constitutive expression of the Flavanone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L Physiological and Molecular Plant Pathology, 2005, 67, 100-107.	2.5	34
67	Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theoretical and Applied Genetics, 2004, 109, 733-739.	3.6	151