
Weidong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/201646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A ceratoâ€platanin protein SsCP1 targets plant PR1 and contributes to virulence of <i>Sclerotinia sclerotiorum</i> . New Phytologist, 2018, 217, 739-755.	7.3	211
2	Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica, 2006, 147, 223-253.	1.2	154
3	Achievements and Challenges in Legume Breeding for Pest and Disease Resistance. Critical Reviews in Plant Sciences, 2015, 34, 195-236.	5.7	153
4	Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theoretical and Applied Genetics, 2004, 109, 733-739.	3.6	151
5	Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biological Control, 2014, 72, 98-108.	3.0	136
6	Genetics of Chickpea Resistance to Five Races of Fusarium Wilt and a Concise Set of Race Differentials for Fusarium oxysporum f. sp. ciceris. Plant Disease, 2005, 89, 385-390.	1.4	125
7	<scp>pH</scp> dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalateâ€minus mutants of <scp><i>S</i></scp> <i>clerotinia sclerotiorum</i> . Environmental Microbiology, 2015, 17, 2896-2909.	3.8	85
8	Two Novel Hypovirulence-Associated Mycoviruses in the Phytopathogenic Fungus Botrytis cinerea: Molecular Characterization and Suppression of Infection Cushion Formation. Viruses, 2018, 10, 254.	3.3	81
9	<i>Sclerotinia sclerotiorum</i> : An Evaluation of Virulence Theories. Annual Review of Phytopathology, 2018, 56, 311-338.	7.8	74
10	Didymella pisi sp. nov., the teleomorph of Ascochyta pisi. Mycological Research, 2009, 113, 391-400.	2.5	65
11	Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biological Control, 2016, 101, 31-38.	3.0	63
12	Inheritance and Linkage Map Positions of Genes Conferring Resistance to Stemphylium Blight in Lentil. Crop Science, 2010, 50, 1831-1839.	1.8	59
13	<i>Sclerotinia sclerotiorum</i> Populations Infecting Canola from China and the United States Are Genetically and Phenotypically Distinct. Phytopathology, 2013, 103, 750-761.	2.2	59
14	Degradation of oxalic acid by the mycoparasite <i><scp>C</scp>oniothyrium minitans</i> plays an important role in interacting with <i><scp>S</scp>clerotinia sclerotiorum</i> . Environmental Microbiology, 2014, 16, 2591-2610.	3.8	57
15	Random T-DNA Mutagenesis Identifies a Cu/Zn Superoxide Dismutase Gene as a Virulence Factor of <i>Sclerotinia sclerotiorum</i> . Molecular Plant-Microbe Interactions, 2013, 26, 431-441.	2.6	55
16	An effector of a necrotrophic fungal pathogen targets the calciumâ€sensing receptor in chloroplasts to inhibit host resistance. Molecular Plant Pathology, 2020, 21, 686-701.	4.2	55
17	Production of anti-fungal volatiles by non-pathogenic Fusarium oxysporum and its efficacy in suppression of Verticillium wilt of cotton. Plant and Soil, 2015, 392, 101-114.	3.7	45
18	ldentification of markers associated with genes for rust resistance in Lens culinaris Medik Euphytica, 2010, 175, 261-265.	1.2	44

#	Article	IF	CITATIONS
19	Functional Analyses of the Diels-Alderase Gene <i>sol5</i> of <i>Ascochyta rabiei</i> and <i>Alternaria solani</i> Indicate that the Solanapyrone Phytotoxins Are Not Required for Pathogenicity. Molecular Plant-Microbe Interactions, 2015, 28, 482-496.	2.6	43
20	Reveromycins A and B from Streptomyces sp. 3–10: Antifungal Activity against Plant Pathogenic Fungi In vitro and in a Strawberry Food Model System. Frontiers in Microbiology, 2017, 8, 550.	3.5	42
21	Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Scientific Reports, 2016, 6, 24325.	3.3	41
22	Development of PCR-Based Assays for Detecting and Differentiating Three Species of <i>Botrytis</i> Infecting Broad Bean. Plant Disease, 2015, 99, 691-698.	1.4	40
23	A Novel Partitivirus in the Hypovirulent Isolate QT5-19 of the Plant Pathogenic Fungus Botrytis cinerea. Viruses, 2019, 11, 24.	3.3	39
24	Stem and Crown Rot of Chickpea in California Caused by Sclerotinia trifoliorum. Plant Disease, 2008, 92, 917-922.	1.4	36
25	<scp>CmpacC</scp> regulates mycoparasitism, oxalate degradation and antifungal activity in the mycoparasitic fungus <scp><i>C</i></scp> <i>oniothyrium minitans</i> . Environmental Microbiology, 2015, 17, 4711-4729.	3.8	35
26	Constitutive expression of the Flavanone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L. Physiological and Molecular Plant Pathology, 2005, 67, 100-107.	2.5	34
27	Resistance to ascochyta blights of cool season food legumes. European Journal of Plant Pathology, 2007, 119, 135-141.	1.7	31
28	Sclerotinia minor Endornavirus 1, a Novel Pathogenicity Debilitation-Associated Mycovirus with a Wide Spectrum of Horizontal Transmissibility. Viruses, 2018, 10, 589.	3.3	30
29	A BAC/BIBAC-based physical map of chickpea, Cicer arietinum L. BMC Genomics, 2010, 11, 501.	2.8	29
30	Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera. Scientific Reports, 2016, 6, 20192.	3.3	29
31	Inheritance and Linkage Map Positions of Genes Conferring Agromorphological Traits in <i>Lens culinaris</i> Medik International Journal of Agronomy, 2013, 2013, 1-9.	1.2	25
32	A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nature Communications, 2022, 13, 2213.	12.8	25
33	Characterization of three mycoviruses co-infecting the plant pathogenic fungus Sclerotinia nivalis. Virus Research, 2016, 223, 28-38.	2.2	23
34	Assessing the contribution of ethaboxam in seed treatment cocktails for the management of metalaxyl-resistant Pythium ultimum var. ultimum in Pacific Northwest spring wheat production. Crop Protection, 2019, 115, 7-12.	2.1	22
35	Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation. Current Genetics, 2006, 49, 272-280.	1.7	20
36	Contrast Between Orange- and Black-Colored Sclerotial Isolates of Botrytis cinerea: Melanogenesis and Ecological Fitness. Plant Disease, 2018, 102, 428-436.	1.4	19

#	Article	IF	CITATIONS
37	Defective RNA of a Novel Mycovirus with High Transmissibility Detrimental to Biocontrol Properties of Trichoderma spp Microorganisms, 2019, 7, 507.	3.6	19
38	Phytotoxic Metabolites Produced by Legume-Associated Ascochyta and Its Related Genera in the Dothideomycetes. Toxins, 2019, 11, 627.	3.4	19
39	A Single-Nucleotide Deletion in the Transcription Factor Gene bcsmr1 Causes Sclerotial-Melanogenesis Deficiency in Botrytis cinerea. Frontiers in Microbiology, 2017, 8, 2492.	3.5	18
40	Direct repeat-mediated DNA deletion of the mating type MAT1-2 genes results in unidirectional mating type switching in Sclerotinia trifoliorum. Scientific Reports, 2016, 6, 27083.	3.3	17
41	Sclerotinia sclerotiorum populations: clonal or recombining?. Tropical Plant Pathology, 2019, 44, 23-31.	1.5	17
42	<i>Ascochyta rabiei</i> : A threat to global chickpea production. Molecular Plant Pathology, 2022, 23, 1241-1261.	4.2	16
43	A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei. Eukaryotic Cell, 2015, 14, 1102-1113.	3.4	15
44	Production of the antibiotic secondary metabolite solanapyrone A by the fungal plant pathogen <i>Ascochyta rabiei</i> during fruiting body formation in saprobic growth. Environmental Microbiology, 2017, 19, 1822-1835.	3.8	13
45	Fungicide Treatments to Control Seed-borne Fungi of Sunflower Seeds. Pathogens, 2020, 9, 29.	2.8	13
46	Genome-Wide Identification and Expression Analysis of the bZIP Transcription Factors in the Mycoparasite Coniothyrium minitans. Microorganisms, 2020, 8, 1045.	3.6	12
47	Towards identifying pathogenic determinants of the chickpea pathogen Ascochyta rabiei. European Journal of Plant Pathology, 2007, 119, 3-12.	1.7	11
48	Competitive saprophytic ability of the hypovirulent isolate QT5-19 of Botrytis cinerea and its importance in biocontrol of necrotrophic fungal pathogens. Biological Control, 2020, 142, 104182.	3.0	11
49	A Simple and Effective Technique for Production of Pycnidia and Pycnidiospores by <i>Macrophomina phaseolina</i> . Plant Disease, 2020, 104, 1183-1187.	1.4	10
50	Comparative Transcriptome Analysis between the Fungal Plant PathogensSclerotinia sclerotiorumandS. trifoliorumUsing RNA Sequencing. Journal of Heredity, 2016, 107, 163-172.	2.4	9
51	The cyclase-associated protein ChCAP is important for regulation of hyphal growth, appressorial development, penetration, pathogenicity, conidiation, intracellular cAMP level, and stress tolerance in Colletotrichum higginsianum. Plant Science, 2019, 283, 1-10.	3.6	9
52	Sclerotinia sclerotiorumÂSsCut1 Modulates Virulence and Cutinase Activity. Journal of Fungi (Basel,) Tj ETQq	000rggT /C	overlock 10 Tf
53	The D-galacturonic acid catabolic pathway genes differentially regulate virulence and salinity response in Sclerotinia sclerotiorum. Fungal Genetics and Biology, 2020, 145, 103482.	2.1	7

⁵⁴ <i>Botrytis cinerea</i>
 <scp>BcSSP2</scp> protein is a late infection phase, cytotoxic effector.
3.8 7

#	Article	IF	CITATIONS
55	Validation of molecular markers for resistance among Pakistani chickpea germplasm to races of Fusarium oxysporum f. sp. ciceris. European Journal of Plant Pathology, 2012, 132, 237-244.	1.7	6
56	Characterization of the Mycelial Compatibility Groups and Mating Type Alleles in Populations of Sclerotinia minor in Central China. Plant Disease, 2016, 100, 2313-2318.	1.4	6
57	Identification of a Polyketide Synthase Gene Responsible for Ascochitine Biosynthesis in Ascochyta fabae and Its Abrogation in Sister Taxa. MSphere, 2019, 4, .	2.9	6
58	Chickpea Seed Rot and Damping-Off Caused by Metalaxyl-Resistant <i>Pythium ultimum</i> and Its Management with Ethaboxam. Plant Disease, 2021, 105, 1728-1737.	1.4	6
59	A novel antisense long nonâ€coding <scp>RNA</scp> participates in asexual and sexual reproduction by regulating the expression of <scp><i>CzmetE</i></scp> in <scp><i>Fusarium graminearum</i></scp> . Environmental Microbiology, 2021, 23, 4939-4955.	3.8	6
60	Genetic Diversity and Recombination in the Plant Pathogen Sclerotinia sclerotiorum Detected in Sri Lanka. Pathogens, 2020, 9, 306.	2.8	5
61	Pulse crop diseases in the Pacific Northwest. Crops & Soils, 2016, 49, 20-26.	0.2	4
62	Registration of â€~Royal' Chickpea. Journal of Plant Registrations, 2019, 13, 123-127.	0.5	4
63	Ascospore dimorphism-associated mating types of Sclerotinia trifoliorum equally capable of inducing mycelial infection on chickpea plants. Australasian Plant Pathology, 2011, 40, 648-655.	1.0	3
64	Resistance to ascochyta blights of cool season food legumes. , 2007, , 135-141.		3
65	A novel alphahypovirus that infects the fungal plant pathogen Sclerotinia sclerotiorum. Archives of Virology, 2022, 167, 213-217.	2.1	1
66	Genome Sequence of Sclerotinia sclerotiorum Hypovirulence-Associated DNA Virus 1 Found in the Fungus Penicillium olsonii Isolated from Washington State, USA. Microbiology Resource Announcements, 2022, , e0001922.	0.6	1
67	Towards identifying pathogenic determinants of the chickpea pathogen Ascochyta rabiei. , 2007, , 3-12.		0