Wilm Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2016427/publications.pdf

Version: 2024-02-01

471509 642732 1,491 23 17 23 h-index citations g-index papers 24 24 24 2466 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The role of surface oxidation and Fe–Ni synergy in Fe–Ni–S catalysts for CO ₂ hydrogenation. Faraday Discussions, 2021, 230, 30-51.	3.2	21
2	A surface oxidised Fe–S catalyst for the liquid phase hydrogenation of CO ₂ . Catalysis Science and Technology, 2021, 11, 779-784.	4.1	10
3	Identifying key mononuclear Fe species for low-temperature methane oxidation. Chemical Science, 2021, 12, 3152-3160.	7.4	49
4	Elucidating the Significance of Copper and Nitrate Speciation in Cu-SSZ-13 for N ₂ O Formation during NH ₃ -SCR. ACS Catalysis, 2021, 11, 13091-13101.	11.2	21
5	Improving Photocatalytic Energy Conversion via NAD(P)H. Joule, 2020, 4, 2055-2059.	24.0	25
6	Adsorbate-Induced Structural Evolution of Pd Catalyst for Selective Hydrogenation of Acetylene. ACS Catalysis, 2020, 10, 15048-15059.	11.2	50
7	Understanding structure-activity relationships in highly active La promoted Ni catalysts for CO2 methanation. Applied Catalysis B: Environmental, 2020, 278, 119256.	20.2	46
8	Vacancy enriched ultrathin TiMgAl-layered double hydroxide/graphene oxides composites as highly efficient visible-light catalysts for CO2 reduction. Applied Catalysis B: Environmental, 2020, 270, 118878.	20.2	53
9	Carbidisation of Pd Nanoparticles by Ethene Decomposition with Methane Production. ChemCatChem, 2019, 11, 4334-4339.	3.7	9
10	A comparison of photocatalytic reforming reactions of methanol and triethanolamine with Pd supported on titania and graphitic carbon nitride. Applied Catalysis B: Environmental, 2019, 240, 373-379.	20.2	71
11	Solvent Free Synthesis of PdZn/TiO2 Catalysts for the Hydrogenation of CO2 to Methanol. Topics in Catalysis, 2018, 61, 144-153.	2.8	39
12	Hydrogenation of CO ₂ to Dimethyl Ether over Brønsted Acidic PdZn Catalysts. Industrial & Lamp; Engineering Chemistry Research, 2018, 57, 6821-6829.	3.7	59
13	Probing the Role of a Nonâ€Thermal Plasma (NTP) in the Hybrid NTP Catalytic Oxidation of Methane. Angewandte Chemie - International Edition, 2017, 56, 9351-9355.	13.8	58
14	Identification of single-site gold catalysis in acetylene hydrochlorination. Science, 2017, 355, 1399-1403.	12.6	380
15	Probing the Role of a Nonâ€Thermal Plasma (NTP) in the Hybrid NTP Catalytic Oxidation of Methane. Angewandte Chemie, 2017, 129, 9479-9483.	2.0	3
16	The adsorbed state of a thiol on palladium nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 17265-17271.	2.8	6
17	Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 2016, 343, 133-146.	6.2	359
18	Exploring the mechanisms of metal co-catalysts in photocatalytic reduction reactions: Is Ag a good candidate?. Applied Catalysis A: General, 2016, 518, 213-220.	4.3	17

WILM JONES

#	Article	IF	CITATIONS
19	Rutile TiO2–Pd Photocatalysts for Hydrogen Gas Production from Methanol Reforming. Topics in Catalysis, 2015, 58, 70-76.	2.8	22
20	The Photocatalytic Window: Photo-Reforming of Organics and Water Splitting for Sustainable Hydrogen Production. Catalysis Letters, 2015, 145, 214-219.	2.6	42
21	Tailoring the selectivity of glycerol oxidation by tuning the acid–base properties of Au catalysts. Catalysis Science and Technology, 2015, 5, 1126-1132.	4.1	78
22	Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness. Physical Chemistry Chemical Physics, 2014, 16, 26638-26644.	2.8	17
23	The Nature of the Molybdenum Surface in Iron Molybdate. The Active Phase in Selective Methanol Oxidation. Journal of Physical Chemistry C, 2014, 118, 26155-26161.	3.1	56