
Gennadii Kolbasov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2016102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochromism and reversible changes in the position of fundamental absorption edge in cathodically deposited amorphous WO3. Electrochimica Acta, 2004, 49, 2425-2433.	2.6	52
2	Carbon nanofibers as hydrogen adsorbing materials for power sources. Journal of Power Sources, 2008, 176, 320-324.	4.0	20
3	Nitrogen doped iron titanate films: photoelectrochemical, electrocatalytic, photocatalytic and structural features. Applied Surface Science, 2019, 473, 343-351.	3.1	20
4	Atomic structure and hydrogen storage properties of amorphous–quasicrystalline Zr–Cu–Ni–Al melt-spun ribbons. Journal of Non-Crystalline Solids, 2007, 353, 3434-3438.	1.5	17
5	Optical and kinetic properties of cathodically deposited amorphous tungsten oxide films. Journal of Non-Crystalline Solids, 2006, 352, 3995-4002.	1.5	16
6	All solid-state battery based on ceramic oxide electrolytes with perovskite and NASICON structure. Journal of Solid State Electrochemistry, 2018, 22, 2315-2320.	1.2	14
7	Title is missing!. Russian Journal of Applied Chemistry, 2002, 75, 229-234.	0.1	11
8	Dynamics of redox processes and electrochromism of films of zirconium (IV) phthalocyanines with out-of-plane β-dicarbonyl ligands. Solid State Ionics, 2009, 180, 928-933.	1.3	11
9	Kinetics of electrochromic process in thin films of cathodically deposited nickel hydroxide. Journal of Solid State Electrochemistry, 2013, 17, 2643-2649.	1.2	11
10	Application of volumetric electric-spark dispersion for the fabrication of Ti–Zr–Ni hydrogen storage alloys. Journal of Power Sources, 2005, 150, 276-281.	4.0	7
11	Electrodes based on nanodispersed titanium and tungsten oxides for a sensor of dissolved oxygen. Russian Journal of Applied Chemistry, 2006, 79, 596-601.	0.1	6
12	Recovery of tungsten and cobalt from secondary raw materials by a combined electrochemical and chemical procedure. Russian Journal of Applied Chemistry, 2010, 83, 1660-1662.	0.1	6
13	Synthesis of reduced graphene oxide and its electrocatalytic properties. Russian Journal of Applied Chemistry, 2013, 86, 858-862.	0.1	6
14	Gasochromic α,β–Ni(OH)2 films for the determination of CO and chlorine content. Sensors and Actuators B: Chemical, 2017, 244, 717-726.	4.0	6
15	Electrochemical method for the preparation nanocomposites based on carbon nanotubes and chromium oxides for oxygen electrodes. Journal of Solid State Electrochemistry, 2010, 14, 2169-2172.	1.2	5
16	Electrocatalytic properties of multiwalled carbon nanotubes-based nanocomposites for oxygen electrodes. Russian Journal of Applied Chemistry, 2012, 85, 1536-1540.	0.1	5
17	Accumulation of Solar Hydrogen in the Photoelectrochemical System Based on CdSe Photoanode and MH Cathode. ECS Transactions, 2018, 87, 335-342.	0.3	5
18	Carbon Nitride is a Non-Metallic Catalyst for Oxygen Electrodes for Fuel Cells. ECS Transactions, 2021, 105, 87-96.	0.3	5

Gennadii Kolbasov

#	Article	IF	CITATIONS
19	Electrochemical deposition of electrochromic niobium oxide films from an acidic solution of niobium peroxo complexes. Russian Journal of Applied Chemistry, 2013, 86, 644-647.	0.1	4
20	Physical and Chemical Properties and Photocatalytic Activity of Nanostructured TiO2/CdS Films. Journal of Applied Spectroscopy, 2014, 81, 238-243.	0.3	4
21	Lithium–air cell with lanthanum–lithium titanate ceramic electrolyte. Russian Journal of Electrochemistry, 2015, 51, 1162-1167.	0.3	4
22	Kinetics of coloration of electrochromic tungsten oxide films produced by cathodic electrodeposition. Russian Journal of Applied Chemistry, 2006, 79, 250-255.	0.1	3
23	Photoelectrochemical properties of TiO2 films obtained by electrical explosion. Theoretical and Experimental Chemistry, 2012, 48, 38-42.	0.2	3
24	Photoelectrochemical Currents at Gold Electrode at Negative Potentials. Russian Journal of Electrochemistry, 2002, 38, 651-654.	0.3	2
25	Synthesis of BXNYCZ powder coating under concentrate light. Vacuum, 2015, 116, 73-76.	1.6	2
26	ELECTROCHEMISTRY OF FUNCTIONAL MATERIALS AND SYSTEMS (EFMS). Ukrainian Chemistry Journal, 2021, 87, 61-76.	0.1	2
27	Title is missing!. Russian Journal of Applied Chemistry, 2002, 75, 223-228.	0.1	1
28	Electrocatalytic Properties of Nanocomposites for Electrochemical Power Sources from the Standpoint of Localization of Reactions. ECS Transactions, 2012, 40, 133-137.	0.3	1
29	DETERMINATION OF CU(II) CONCENTRATION IN AQUEOUS MEDIUM USING INVERSION ELECTROCHEMICAL METHOD. Ukrainian Chemical Journal, 2019, 85, 24-30.	0.3	1
30	Title is missing!. Russian Journal of Applied Chemistry, 2003, 76, 391-395.	0.1	0
31	Air electrode of chemical power cell as oxygen sensor. Russian Journal of Applied Chemistry, 2004, 77, 1649-1652.	0.1	0
32	Spectroscopic, electrocatalytic, and photoelectrochemical characteristics of mixed-ligand bis(l²-dicarbonylato) phthalocyanine complexes of zirconium(IV) and hafnium(IV). Theoretical and Experimental Chemistry, 2008, 44, 139-143.	0.2	0
33	Nanocomposites based on chromium oxide and carbon nanotubes for oxygen electrodes of power cells. Russian Journal of Applied Chemistry, 2010, 83, 1010-1014.	0.1	0
34	DETERMINATION OF Cu(II) CONCENTRATION IN AQUEOUS MEDIUM USING INVERSION ELECTROCHEMICAL METHOD. Ukrainian Chemical Journal, 2019, 85, 58-64.	0.3	0
35	OBTAINING PARTIALLY UNZIPPED CARBON NANOTUBES FOR OXYGEN ELECTRODES. Ukrainian Chemical Journal, 2019, 85, 41-51.	0.3	0
36	SYNTHESIS, PHOTO- AND ELECTROCATALYTIC PROPERTIES OF NANOSTRUCTURED Ce–TiO2 FILMS. Ukrainian Chemical Journal, 2019, 85, 63-72.	0.3	0

#	Article	IF	CITATIONS
37	ELECTROCHEMICAL SENSOR FOR DETERMINATION OF THE OXYGEN CONCENTRATIONS IN BIOLOGICAL LIQUIDS. Ukrainian Chemical Journal, 2020, 86, 97-99.	0.3	Ο
38	Photoelectrochemical Systems for Hydrogen Evolution Using Ion-Conducting Membranes. ECS Transactions, 2020, 99, 221-227.	0.3	0
39	Simple Method of Graphene Quantum Dots Preparation from Partially Unzipped Multi-Walled Carbon Nanotubes. ECS Transactions, 2020, 99, 275-284.	0.3	Ο