
Lingjun Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2015896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of aromatic hydrocarbons by co-cracking of bio-oil and ethanol over Ga2O3/HZSM-5 catalysts. Chinese Journal of Chemical Engineering, 2022, 46, 126-133.	3.5	4
2	Novel Approach on Developing TiO ₂ -Supported Heteropolyacids Catalyst for the Efficient Conversion of Xylose to Furfural. Energy & Fuels, 2022, 36, 7599-7607.	5.1	9
3	Dual -functional carbon-based solid acid-induced hydrothermal conversion of biomass saccharides: catalyst rational design and kinetic analysis. Green Chemistry, 2021, 23, 8458-8467.	9.0	15
4	Preparation of energy platform chemicals by hydrothermal conversion of citrus peel. Energy Science and Engineering, 2021, 9, 1033-1041.	4.0	4
5	Catalytic Reforming of the Aqueous Phase Derived from Diluted Hydrogen Peroxide Oxidation of Waste Polyethylene for Hydrogen Production. ChemSusChem, 2021, 14, 4270-4279.	6.8	11
6	Conversion of Xylose to Furfural Catalyzed by Carbon-Based Solid Acid Prepared from Pectin. Energy & Fuels, 2021, 35, 9961-9969.	5.1	23
7	Mechanism study on the effect of glycerol addition on tobacco pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105183.	5.5	13
8	Selective Demethoxylation of Lignin-Derived Methoxyphenols to Phenols over Lignin-Derived-Biochar-Supported Mo ₂ C Catalysts. Energy & Fuels, 2021, 35, 17138-17148.	5.1	6
9	Critical Review on the Preparation of Platform Compounds from Biomass or Saccharides via Hydrothermal Conversion over Carbon-Based Solid Acid Catalysts. Energy & Fuels, 2021, 35, 14462-14483.	5.1	15
10	Preparation of Nitrogen and Sulfur Coâ€doped and Interconnected Hierarchical Porous Biochar by Pyrolysis of Mantis Shrimp in CO ₂ Atmosphere for Symmetric Supercapacitors. ChemElectroChem, 2021, 8, 3745-3754.	3.4	11
11	Selective Fischer-Tropsch synthesis for gasoline production over Y, Ce, or La-modified Co/H-β. Fuel, 2020, 262, 116490.	6.4	12
12	Experimental study and life cycle assessment of CO2 methanation over biochar supported catalysts. Applied Energy, 2020, 280, 115919.	10.1	24
13	Conversion of Glucose into 5-Hydroxymethylfurfural and Levulinic Acid Catalyzed by SO ₄ ^{2–} /ZrO ₂ in a Biphasic Solvent System. Energy & Fuels, 2020, 34, 11041-11049.	5.1	48
14	Selective Fischer–Tropsch synthesis for jet fuel production over Y ³⁺ modified Co/H-β catalysts. Sustainable Energy and Fuels, 2020, 4, 3528-3536.	4.9	8
15	Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts. Applied Energy, 2020, 275, 115154.	10.1	47
16	Hydrodeoxygenation of Ligninâ€Đerived Monomers and Dimers over a Ru Supported Solid Super Acid Catalyst for Cycloalkane Production. Advanced Sustainable Systems, 2020, 4, 1900136.	5.3	18
17	The influence mechanism of solvent on the hydrogenation of dimethyl oxalate. Chinese Journal of Chemical Engineering, 2019, 27, 386-390.	3.5	4
18	Experimental and Kinetic Study of Arabinose Conversion to Furfural in Renewable Butanone–Water Solvent Mixture Catalyzed by Lewis Acidic Ionic Liquid Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 17088-17097.	3.7	16

Lingjun Zhu

#	Article	IF	CITATIONS
19	Enhancement of CO ₂ Methanation over La-Modified Ni/SBA-15 Catalysts Prepared by Different Doping Methods. ACS Sustainable Chemistry and Engineering, 2019, 7, 14647-14660.	6.7	69
20	Nitrogen-Doped Hierarchical Porous Biochar Derived from Corn Stalks for Phenol-Enhanced Adsorption. Energy & Fuels, 2019, 33, 12459-12468.	5.1	90
21	Dehydration of xylose to furfural in butanone catalyzed by BrÃ,nsted‣ewis acidic ionic liquids. Energy Science and Engineering, 2019, 7, 2237-2246.	4.0	25
22	Enhanced furfural production from biomass and its derived carbohydrates in the renewable butanone–water solvent system. Sustainable Energy and Fuels, 2019, 3, 3208-3218.	4.9	28
23	Comparative Study on the Dehydration of Biomass-Derived Disaccharides and Polysaccharides to 5-Hydroxymethylfurfural. Energy & amp; Fuels, 2019, 33, 9985-9995.	5.1	27
24	Green Conversion of Microalgae into Highâ€Performance Spongeâ€like Nitrogenâ€Enriched Carbon. ChemElectroChem, 2019, 6, 602-602.	3.4	9
25	Green Conversion of Microalgae into Highâ€Performance Spongeâ€Like Nitrogenâ€Enriched Carbon. ChemElectroChem, 2019, 6, 646-652.	3.4	22
26	Bio-MCM-41: a high-performance catalyst support derived from pyrolytic biochar. New Journal of Chemistry, 2018, 42, 12394-12402.	2.8	12
27	Effect of Torrefaction on the Structure and Pyrolysis Behavior of Lignin. Energy & Fuels, 2018, 32, 4160-4166.	5.1	62
28	CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2. Science of the Total Environment, 2018, 625, 686-695.	8.0	142
29	Effect of Ni Precipitation Method on CO Methanation over Ni/TiO2 Catalysts. Chemical Research in Chinese Universities, 2018, 34, 296-301.	2.6	11
30	Conversion of C5 carbohydrates into furfural catalyzed by a Lewis acidic ionic liquid in renewable Î ³ -valerolactone. Green Chemistry, 2017, 19, 3869-3879.	9.0	68
31	Catalytic methanation of syngas over Ni-based catalysts with different supports. Chinese Journal of Chemical Engineering, 2017, 25, 602-608.	3.5	17
32	Influence of inlet gas composition on dimethyl ether carbonylation and the subsequent hydrogenation of methyl acetate in two-stage ethanol synthesis. New Journal of Chemistry, 2016, 40, 6460-6466.	2.8	15
33	The catalytic properties evolution of HZSM-5 in the conversion of methanol to gasoline. RSC Advances, 2016, 6, 82515-82522.	3.6	8
34	Comparative Life Cycle Assessment of Ethanol Synthesis from Corn Stover by Direct and Indirect Thermochemical Conversion Processes. Energy & Fuels, 2015, 29, 7998-8005.	5.1	9
35	Biochar: a new promising catalyst support using methanation as a probe reaction. Energy Science and Engineering, 2015, 3, 126-134.	4.0	68
36	Co-cracking of bio-oil model compound mixtures and ethanol over different metal oxide-modified HZSM-5 catalysts. Fuel, 2015, 160, 534-543.	6.4	58

Lingjun Zhu

#	Article	IF	CITATIONS
37	Methyl Acetate Synthesis from Dimethyl Ether Carbonylation over Mordenite Modified by Cation Exchange. Journal of Physical Chemistry C, 2015, 119, 524-533.	3.1	88
38	Methanation of bio-syngas over a biochar supported catalyst. New Journal of Chemistry, 2014, 38, 4471.	2.8	58
39	Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production. New Journal of Chemistry, 2014, 38, 2792.	2.8	49
40	Influence of Ni Promotion on Liquid Hydrocarbon Fuel Production over Co/CNT Catalysts. Energy & Fuels, 2013, 27, 3961-3968.	5.1	26
41	Improved Fischer–Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts. Fuel, 2013, 108, 597-603.	6.4	112
42	Highly active and selective Cu/SiO2 catalysts prepared by the urea hydrolysis method in dimethyl oxalate hydrogenation. Catalysis Communications, 2011, 12, 1246-1250.	3.3	48
43	Ethylene glycol and ethanol synthesis from dimethyl oxalate hydrogenation on the Cu/ZnO/SiO ₂ catalysts. , 2011, , .		1
44	Synthetic fuels and chemicals production from biomass synthesis gas. , 2010, , .		2
45	Experimental Research on Catalytic Esterification of Bio-Oil Volatile Fraction. , 2010, , .		4