
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/201576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical Biology of the Sugar Code. ChemBioChem, 2004, 5, 740-764.	2.6	466
2	Multivalent glycoconjugates as anti-pathogenic agents. Chemical Society Reviews, 2013, 42, 4709-4727.	38.1	464
3	From lectin structure to functional glycomics: principles of the sugar code. Trends in Biochemical Sciences, 2011, 36, 298-313.	7.5	436
4	Carbohydrate–Aromatic Interactions. Accounts of Chemical Research, 2013, 46, 946-954.	15.6	394
5	Lignin Composition and Structure in Young versus Adult <i>Eucalyptus globulus</i> Plants. Plant Physiology, 2011, 155, 667-682.	4.8	263
6	Molecular Recognition of Saccharides by Proteins. Insights on the Origin of the Carbohydrateâ~Aromatic Interactions. Journal of the American Chemical Society, 2005, 127, 7379-7386.	13.7	214
7	Monolignol acylation and lignin structure in some nonwoody plants: A 2D NMR study. Phytochemistry, 2008, 69, 2831-2843.	2.9	197
8	Chemistry of Lipidâ€A: At the Heart of Innate Immunity. Chemistry - A European Journal, 2015, 21, 500-519.	3.3	193
9	A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 186-235.	2.4	188
10	Highly Acylated (Acetylated and/or <i>p</i> -Coumaroylated) Native Lignins from Diverse Herbaceous Plants. Journal of Agricultural and Food Chemistry, 2008, 56, 9525-9534.	5.2	172
11	Structural Characterization of the Lignin in the Cortex and Pith of Elephant Grass (<i>Pennisetum) Tj ETQq1 1 0.7</i>	784314 rg	BT /Overlock
12	Structural Characterization of the Lignin from Jute (<i>Corchorus capsularis</i>) Fibers. Journal of Agricultural and Food Chemistry, 2009, 57, 10271-10281.	5.2	163
13	A comparison and chemometric analysis of several molecular mechanics force fields and parameter sets applied to carbohydrates. Carbohydrate Research, 1998, 314, 141-155.	2.3	150
14	Solution Structures of Chemoenzymatically Synthesized Heparin and Its Precursors. Journal of the American Chemical Society, 2008, 130, 12998-13007.	13.7	149
15	Structural characterization of milled wood lignins from different eucalypt species. Holzforschung, 2008, 62, 514-526.	1.9	147
16	Deciphering the genetic determinants for aerobic nicotinic acid degradation: The <i>nic</i> cluster from <i>Pseudomonas putida</i> KT2440. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11329-11334.	7.1	136
17	Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood. Industrial Crops and Products, 2009, 30, 137-143.	5.2	135
18	A Synthetic Lectin for Oâ€Linked βâ€ <i>N</i> â€Acetylglucosamine. Angewandte Chemie - International Edition, 2009. 48. 1775-1779.	13.8	133

#	Article	IF	CITATIONS
19	5â€hydroxymethylfurfural conversion by fungal arylâ€alcohol oxidase and unspecific peroxygenase. FEBS Journal, 2015, 282, 3218-3229.	4.7	132
20	Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. Chemistry and Biology, 2000, 7, 529-543.	6.0	131
21	Unique Conformer Selection of Human Growth-Regulatory Lectin Galectin-1 for Ganglioside GM ₁ versus Bacterial Toxins [,] . Biochemistry, 2003, 42, 14762-14773.	2.5	131
22	HSQC-NMR analysis of lignin in woody (<i>Eucalyptus globulus</i> and <i>Picea abies</i>) and non-woody (<i>Agave sisalana</i>) ball-milled plant materials at the gel state 10 th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung, 2009, 63, 691-698.	1.9	130
23	NHCâ€Capped Cyclodextrins (ICyDs): Insulated Metal Complexes, Commutable Multicoordination Sphere, and Cavityâ€Dependent Catalysis. Angewandte Chemie - International Edition, 2013, 52, 7213-7218.	13.8	128
24	Serine versus Threonine Glycosylation:  The Methyl Group Causes a Drastic Alteration on the Carbohydrate Orientation and on the Surrounding Water Shell. Journal of the American Chemical Society, 2007, 129, 9458-9467.	13.7	127
25	Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid. Nature Chemistry, 2016, 8, 186-191.	13.6	127
26	Medicinal Chemistry Based on the Sugar Code: Fundamentals of Lectinology and Experimental Strategies with Lectins as Targets. Current Medicinal Chemistry, 2000, 7, 389-416.	2.4	122
27	Free and protein-bound carbohydrate structures. Current Opinion in Structural Biology, 1999, 9, 549-555.	5.7	119
28	Lignin Modification duringEucalyptus globulusKraft Pulping Followed by Totally Chlorine-Free Bleaching:Â A Two-Dimensional Nuclear Magnetic Resonance, Fourier Transform Infrared, and Pyrolysisâ^'Gas Chromatography/Mass Spectrometry Study. Journal of Agricultural and Food Chemistry, 2007, 55, 3477-3490.	5.2	118
29	Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresource Technology, 2010, 101, 5054-5062.	9.6	112
30	On the Importance of Carbohydrate-Aromatic Interactions for the Molecular Recognition of Oligosaccharides by Proteins: NMR Studies of the Structure and Binding Affinity of AcAMP2-like Peptides with Non-Natural Naphthyl and Fluoroaromatic Residues. Chemistry - A European Journal, 2005, 11, 7060-7074.	3.3	110
31	Protein-Carbohydrate Interactions Studied by NMR: From Molecular Recognition to Drug Design. Current Protein and Peptide Science, 2012, 13, 816-830.	1.4	107
32	Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. Journal of Biotechnology, 2007, 132, 75-81.	3.8	106
33	NMR studies of carbohydrate–protein interactions in solution. Chemical Society Reviews, 1998, 27, 133.	38.1	105
34	The use of the AMBER force field in conformational analysis of carbohydrate molecules: Determination of the solution conformation of methyl ?-lactoside by NMR spectroscopy, assisted by molecular mechanics and dynamics calculations. Biopolymers, 1995, 35, 55-73.	2.4	102
35	Direct STDâ€NMR Identification of βâ€Galactosidase Inhibitors from a Virtual Dynamic Hemithioacetal System. Angewandte Chemie - International Edition, 2010, 49, 589-593.	13.8	102
36	The Interaction of Hevein with N-acetylglucosamine-containing Oligosaccharides. Solution Structure of Hevein Complexed to Chitobiose. FEBS Journal, 1995, 230, 621-633.	0.2	99

#	Article	IF	CITATIONS
37	Escherichiacoliβ-Galactosidase Recognizes a High-Energy Conformation of C-Lactose, a Nonhydrolizable Substrate Analogue. NMR and Modeling Studies of the Molecular Complex. Journal of the American Chemical Society, 1998, 120, 1309-1318.	13.7	98
38	A Simple Model System for the Study of Carbohydrateâ [^] Aromatic Interactions. Journal of the American Chemical Society, 2007, 129, 2890-2900.	13.7	98
39	Galacto-oligosaccharide Synthesis from Lactose Solution or Skim Milk Using the β-Galactosidase from Bacillus circulans. Journal of Agricultural and Food Chemistry, 2012, 60, 6391-6398.	5.2	96
40	Towards Defining the Role of Glycans as Hardware in Information Storage and Transfer: Basic Principles, Experimental Approaches and Recent Progress. Cells Tissues Organs, 2001, 168, 5-23.	2.3	95
41	Enthalpic Nature of the CH/Ï€ Interaction Involved in the Recognition of Carbohydrates by Aromatic Compounds, Confirmed by a Novel Interplay of NMR, Calorimetry, and Theoretical Calculations. Journal of the American Chemical Society, 2009, 131, 18129-18138.	13.7	94
42	Bovine Heart Galectin-1 Selects a Unique (Syn) Conformation of C-Lactose, a Flexible Lactose Analogue. Journal of the American Chemical Society, 1999, 121, 8995-9000.	13.7	93
43	Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by <i>in situ</i> structural analyses. Environmental Microbiology, 2011, 13, 96-107.	3.8	93
44	Production of Galacto-oligosaccharides by the β-Galactosidase from Kluyveromyces lactis: Comparative Analysis of Permeabilized Cells versus Soluble Enzyme. Journal of Agricultural and Food Chemistry, 2011, 59, 10477-10484.	5.2	92
45	Structural Characterization of Guaiacyl-rich Lignins in Flax (Linum usitatissimum) Fibers and Shives. Journal of Agricultural and Food Chemistry, 2011, 59, 11088-11099.	5.2	92
46	Recent Developments in Synthetic Carbohydrateâ€Based Diagnostics, Vaccines, and Therapeutics. Chemistry - A European Journal, 2015, 21, 10616-10628.	3.3	92
47	1D Saturation Transfer Difference NMR Experiments on Living Cells: The DC-SIGN/Oligomannose Interaction. Angewandte Chemie - International Edition, 2005, 44, 296-298.	13.8	91
48	Novel vaccines targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory TAcells through programmed death ligand 1. Journal of Allergy and Clinical Immunology, 2016, 138, 558-567.e11.	2.9	91
49	The first synthesis of substituted azepanes mimicking monosaccharides: a new class of potent glycosidase inhibitors. Organic and Biomolecular Chemistry, 2004, 2, 1492-1499.	2.8	90
50	The use of CVFF and CFF91 force fields in conformational analysis of carbohydrate molecules. Comparison with AMBER molecular mechanics and dynamics calculations for methyl α-lactoside. International Journal of Biological Macromolecules, 1995, 17, 137-148.	7.5	88
51	Gentisic Acid, a Compound Associated with Plant Defense and a Metabolite of Aspirin, Heads a New Class of in Vivo Fibroblast Growth Factor Inhibitors. Journal of Biological Chemistry, 2010, 285, 11714-11729.	3.4	87
52	The recognition of glycans by protein receptors. Insights from NMR spectroscopy. Chemical Communications, 2018, 54, 4761-4769.	4.1	86
53	Conformational Selection of Glycomimetics at Enzyme Catalytic Sites:  Experimental Demonstration of the Binding of Distinct High-Energy Distorted Conformations of C-, S-, and O-Glycosides by E. Coli β-Galactosidases. Journal of the American Chemical Society, 2002, 124, 4804-4810.	13.7	85
54	Experimental Evidence of Conformational Differences betweenC-Glycosides andO-Glycosides in Solution and in the Protein-Bound State:Â TheC-Lactose/O-Lactose Case. Journal of the American Chemical Society, 1996, 118, 10862-10871.	13.7	84

#	Article	IF	CITATIONS
55	Conformational Differences Between O- and C-Glycosides: Theα-O-Man-(1→1)-β-Gal/α-C-Man-(1→1)-β-Gal Cas Decisive Demonstration of the Importance of theexo-Anomeric Effect on the Conformation of Glycosides. Chemistry - A European Journal, 2000, 6, 1035-1041.	e- A 3.3	83
56	Synthesis and Molecular Recognition Studies of the HNK-1 Trisaccharide and Related Oligosaccharides. The Specificity of Monoclonal Anti-HNK-1 Antibodies as Assessed by Surface Plasmon Resonance and STD NMR. Journal of the American Chemical Society, 2012, 134, 426-435.	13.7	82
57	Tightening or loosening a pH-sensitive double-lasso molecular machine readily synthesized from an ends-activated [c2]daisy chain. Chemical Science, 2012, 3, 1851.	7.4	82
58	Well-Defined Oligo- and Polysaccharides as Ideal Probes for Structural Studies. Journal of the American Chemical Society, 2018, 140, 5421-5426.	13.7	82
59	Zampanolide, a Potent New Microtubule-Stabilizing Agent, Covalently Reacts with the Taxane Luminal Site in Tubulin α,β-Heterodimers and Microtubules. Chemistry and Biology, 2012, 19, 686-698.	6.0	81
60	Structural Characterization of N‣inked Glycans in the Receptor Binding Domain of the SARSâ€CoVâ€2 Spike Protein and their Interactions with Human Lectins. Angewandte Chemie - International Edition, 2020, 59, 23763-23771.	13.8	81
61	Discovery and Characterization of an Endogenous CXCR4 Antagonist. Cell Reports, 2015, 11, 737-747.	6.4	80
62	Molecular Recognition of Carbohydrates Using a Synthetic Receptor. A Model System to Understand the Stereoselectivity of a Carbohydrate-Carbohydrate Interaction in Water. Journal of the American Chemical Society, 1995, 117, 11198-11204.	13.7	79
63	New Insights into α-CalNAcâ^'Ser Motif:  Influence of Hydrogen Bonding versus Solvent Interactions on the Preferred Conformation. Journal of the American Chemical Society, 2006, 128, 14640-14648.	13.7	78
64	Natural Compounds against Alzheimer's Disease: Molecular Recognition of Aβ1–42 Peptide by <i>Salvia sclareoides</i> Extract and its Major Component, Rosmarinic Acid, as Investigated by NMR. Chemistry - an Asian Journal, 2013, 8, 596-602.	3.3	77
65	Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chemical Society Reviews, 2020, 49, 3863-3888.	38.1	77
66	Carbohydrate–Protein Interactions: A 3D View by NMR. ChemBioChem, 2011, 12, 990-1005.	2.6	76
67	NMR investigations of protein-carbohydrate interactions: refined three-dimensional structure of the complex between hevein and methyl A-chitobioside. Glycobiology, 1998, 8, 569-577.	2.5	75
68	NMR and Modeling Studies of Protein-Carbohydrate Interactions: Synthesis, Three-Dimensional Structure, and Recognition Properties of a Minimum Hevein Domain with Binding Affinity for Chitooligosaccharides. ChemBioChem, 2004, 5, 1245-1255.	2.6	75
69	Aromatic–Carbohydrate Interactions: An NMR and Computational Study of Model Systems. Chemistry - A European Journal, 2008, 14, 7570-7578.	3.3	75
70	Diffusion ordered spectroscopy as a complement to size exclusion chromatography in oligosaccharide analysis. Glycobiology, 2004, 14, 451-456.	2.5	73
71	Exploring the Use of Conformationally Locked Aminoglycosides as a New Strategy to Overcome Bacterial Resistance. Journal of the American Chemical Society, 2006, 128, 100-116.	13.7	73
72	Analysis of lignin–carbohydrate and lignin–lignin linkages after hydrolase treatment of xylan–lignin, glucomannan–lignin and glucan–lignin complexes from spruce wood. Planta, 2014, 239, 1079-90.	3.2	73

#	Article	IF	CITATIONS
73	Structural Basis of Ligand Binding to UDP-Galactopyranose Mutase from <i>Mycobacterium tuberculosis</i> Using Substrate and Tetrafluorinated Substrate Analogues. Journal of the American Chemical Society, 2015, 137, 1230-1244.	13.7	73
74	Samarium Diiodide PromotedC-Glycosylation: An Application to the Stereospecific Synthesis ofα-1,2-C-Mannobioside and Its Derivatives. Chemistry - A European Journal, 1999, 5, 430-441.	3.3	72
75	Unravelling the gallic acid degradation pathway in bacteria: the <i>gal</i> cluster from <i>Pseudomonas putida</i> . Molecular Microbiology, 2011, 79, 359-374.	2.5	72
76	New structural insights into carbohydrate–protein interactions from NMR spectroscopy. Current Opinion in Structural Biology, 2003, 13, 646-653.	5.7	71
77	Breaking Pseudoâ€Symmetry in Multiantennary Complex Nâ€Clycans Using Lanthanideâ€Binding Tags and NMR Pseudoâ€Contact Shifts. Angewandte Chemie - International Edition, 2013, 52, 13789-13793.	13.8	71
78	Short-Term Monotherapy in HIV-Infected Patients with a Virus Entry Inhibitor Against the gp41 Fusion Peptide. Science Translational Medicine, 2010, 2, 63re3.	12.4	70
79	Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control. Scientific Reports, 2015, 5, 11951.	3.3	70
80	Carbohydrate Hydrogen-Bonding Cooperativity â^' Intramolecular Hydrogen Bonds and Their Cooperative Effect on Intermolecular Processes â^' Binding to a Hydrogen-Bond Acceptor Molecule. European Journal of Organic Chemistry, 2002, 2002, 840-855.	2.4	69
81	Intramolecular Carbohydrate-Aromatic Interactions and Intermolecular van der Waals Interactions Enhance the Molecular Recognition Ability of GM1 Glycomimetics for Cholera Toxin. Chemistry - A European Journal, 2004, 10, 4395-4406.	3.3	69
82	Conformational Flexibility of a Synthetic Glycosylaminoglycan Bound to a Fibroblast Growth Factor. FGF-1 Recognizes Both the 1C4 and 2SO Conformations of a Bioactive Heparin-like Hexasaccharide. Journal of the American Chemical Society, 2005, 127, 5778-5779.	13.7	69
83	Kinetic and chemical characterization of aldehyde oxidation by fungal aryl-alcohol oxidase. Biochemical Journal, 2010, 425, 585-593.	3.7	69
84	Optimization of Taxane Binding to Microtubules: Binding Affinity Dissection and Incremental Construction of a High-Affinity Analog of Paclitaxel. Chemistry and Biology, 2008, 15, 573-585.	6.0	68
85	Regioselective Lipase-Catalyzed Synthesis of 3- <i>O</i> -Acyl Derivatives of Resveratrol and Study of Their Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2010, 58, 807-813.	5.2	68
86	Modification of the Lignin Structure during Alkaline Delignification of Eucalyptus Wood by Kraft, Soda-AQ, and Soda-O ₂ Cooking. Industrial & Engineering Chemistry Research, 2013, 52, 15702-15712.	3.7	67
87	Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: Effect of reaction conditions. Journal of Molecular Catalysis B: Enzymatic, 2015, 119, 18-25.	1.8	66
88	Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR. Glycobiology, 2016, 26, 888-903.	2.5	66
89	Deciphering the Nonâ€Equivalence of Serine and Threonine <i>O</i> â€Clycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an antiâ€MUC1 Antibody. Angewandte Chemie - International Edition, 2015, 54, 9830-9834.	13.8	65
90	Glycan structures and their interactions with proteins. A NMR view. Current Opinion in Structural Biology, 2020, 62, 22-30.	5.7	65

#	Article	IF	CITATIONS
91	Enzymatic Synthesis of αâ€Glucosides of Resveratrol with Surfactant Activity. Advanced Synthesis and Catalysis, 2011, 353, 1077-1086.	4.3	64
92	Tetrafluorination of Sugars as Strategy for Enhancing Protein–Carbohydrate Affinity: Application to UDPâ€Gal <i>p</i> Mutase Inhibition. Chemistry - A European Journal, 2014, 20, 106-112.	3.3	64
93	NMR Determination of the Bioactive Conformation of Peloruside A Bound To Microtubules. Journal of the American Chemical Society, 2006, 128, 8757-8765.	13.7	62
94	Structural modification of eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase-mediator stage. Holzforschung, 2007, 61, 634-646.	1.9	62
95	The Bound Conformation of Microtubule‣tabilizing Agents: NMR Insights into the Bioactive 3D Structure of Discodermolide and Dictyostatin. Chemistry - A European Journal, 2008, 14, 7557-7569.	3.3	62
96	Molecular Basis for Inhibition of GH84 Glycoside Hydrolases by Substituted Azepanes: Conformational Flexibility Enables Probing of Substrate Distortion. Journal of the American Chemical Society, 2009, 131, 5390-5392.	13.7	62
97	"Rules of Engagement―of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen, 2016, 5, 274-296.	1.9	62
98	Glycans in drug discovery. MedChemComm, 2019, 10, 1678-1691.	3.4	62
99	Studies of the Bound Conformations of Methyl alpha-Lactoside and Methyl beta-Allolactoside to Ricin B Chain Using Transferred NOE Experiments in the Laboratory and Rotating Frames, Assisted by Molecular Mechanics and Dynamics Calculations. FEBS Journal, 1995, 233, 618-630.	0.2	60
100	Fluorinated Carbohydrates as Lectin Ligands: Versatile Sensors in ¹⁹ Fâ€Detected Saturation Transfer Difference NMR Spectroscopy. Chemistry - A European Journal, 2009, 15, 5666-5668.	3.3	60
101	NMR investigations of protein-carbohydrate interactions: Studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N.N?.N?-triacetylchitotriose. , 2000, 40, 218-236.		59
102	The conformation of C-glycosyl compounds. Advances in Carbohydrate Chemistry and Biochemistry, 2000, 56, 235-284.	0.9	59
103	Epoxide Opening versus Silica Condensation during Sol–Gel Hybrid Biomaterial Synthesis. Chemistry - A European Journal, 2013, 19, 7856-7864.	3.3	59
104	Glycosyl Inositol Derivatives Related to Inositolphosphoglycan Mediators: Synthesis, Structure, and Biological Activity. Chemistry - A European Journal, 1999, 5, 320-336.	3.3	58
105	Conformational Behavior of Aza-C-Glycosides:Â Experimental Demonstration of the Relative Role of theexo-anomericEffect and 1,3-Type Interactions in Controlling the Conformation of Regular Glycosides. Journal of the American Chemical Society, 1999, 121, 11318-11329.	13.7	58
106	Triazolopyrimidines Are Microtubule-Stabilizing Agents that Bind the Vinca Inhibitor Site of Tubulin. Cell Chemical Biology, 2017, 24, 737-750.e6.	5.2	58
107	Effect of the Presence of β-Cyclodextrin on the Solution Behavior of Procaine Hydrochloride. Spectroscopic and Thermodynamic Studies. Langmuir, 2000, 16, 1557-1565.	3.5	57
108	Solution NMR structure of a human FGF-1 monomer, activated by a hexasaccharide heparin-analogue. FEBS Journal, 2006, 273, 4716-4727.	4.7	57

#	Article	IF	CITATIONS
109	New Interfacial Microtubule Inhibitors of Marine Origin, PM050489/PM060184, with Potent Antitumor Activity and a Distinct Mechanism. ACS Chemical Biology, 2013, 8, 2084-2094.	3.4	57
110	Conformational Differences of O- and C-Glycosides in the Protein-Bound State: Different Conformations of C-Lactose and Its O-Analogue are Recognized by Ricin B, a Galactose-Binding Protein. Angewandte Chemie International Edition in English, 1996, 35, 303-306.	4.4	56
111	Minimizing the Entropy Penalty for Ligand Binding: Lessons from the Molecular Recognition of the Histo Bloodâ€Group Antigens by Human Galectinâ€3. Angewandte Chemie - International Edition, 2019, 58, 7268-7272.	13.8	56
112	Hevein Domains: An Attractive Model to Study Carbohydrate–Protein Interactions at Atomic Resolution. Advances in Carbohydrate Chemistry and Biochemistry, 2006, 60, 303-354.	0.9	55
113	Chemical Clockwise Tridifferentiation of α―and β yclodextrins: Basculeâ€Bridge or Deoxy‣ugars Strategies. Chemistry - A European Journal, 2007, 13, 9757-9774.	3.3	54
114	Conformation of Glycomimetics in the Free and Protein-Bound State:Â Structural and Binding Features of theC-glycosyl Analogue of the Core Trisaccharide α-d-Man-(1 → 3)-[α-d-Man-(1 → 6)]-d-Man. Journal of the American Chemical Society, 2002, 124, 14940-14951.	13.7	53
115	Synthesis and Conformational Analysis of Novel N(OCH3)-linked Disaccharide Analogues. Chemistry - A European Journal, 2004, 10, 1433-1444.	3.3	53
116	Molecular Characterization of the Gallate Dioxygenase from Pseudomonas putida KT2440. Journal of Biological Chemistry, 2005, 280, 35382-35390.	3.4	53
117	Limited Flexibility of Lactose Detected from Residual Dipolar Couplings Using Molecular Dynamics Simulations and Steric Alignment Methods. Journal of the American Chemical Society, 2005, 127, 3589-3595.	13.7	53
118	Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation. Interface Focus, 2014, 4, 20130040.	3.0	53
119	The Conformational Behaviour of Non-Hydrolizable Lactose Analogues: The Thioglycoside, Carbaglycoside, and Carba-Iminoglycoside Cases. European Journal of Organic Chemistry, 2000, 2000, 1945-1952.	2.4	52
120	Synthesis and Conformational Analysis of (αâ€ <scp>D</scp> â€Galactosyl)phenylmethane and αâ€,βâ€Difluoromethane Analogues: Interactions with the Plant Lectin Viscumin. Chemistry - A European Journal, 2009, 15, 2861-2873.	3.3	52
121	Synthetic, Zwitterionic Sp1 Oligosaccharides Adopt a Helical Structure Crucial for Antibody Interaction. ACS Central Science, 2019, 5, 1407-1416.	11.3	52
122	Novel NMR Avenues to Explore the Conformation and Interactions of Glycans. ACS Omega, 2019, 4, 13618-13630.	3.5	52
123	Dissecting the Essential Role of Anomeric β-Triflates in Glycosylation Reactions. Journal of the American Chemical Society, 2020, 142, 12501-12514.	13.7	52
124	Studies on the molecular recognition of synthetic methyl beta-lactoside analogs by ricin, a cytotoxic plant lectin. FEBS Journal, 1991, 197, 217-228.	0.2	51
125	Hydrogen-bonding pattern of methyl beta-lactoside binding to the Ricinus communis lectins. FEBS Journal, 1993, 214, 677-683.	0.2	51
126	The Solid State, Solution and Tubulin-Bound Conformations of Agents that Promote Microtubule Stabilization. Anti-Cancer Agents in Medicinal Chemistry, 2012, 2, 91-122.	7.0	51

#	Article	IF	CITATIONS
127	Lanthanide-Chelating Carbohydrate Conjugates Are Useful Tools To Characterize Carbohydrate Conformation in Solution and Sensitive Sensors to Detect Carbohydrate–Protein Interactions. Journal of the American Chemical Society, 2014, 136, 8011-8017.	13.7	51
128	Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. Journal of the American Chemical Society, 2019, 141, 4063-4072.	13.7	51
129	Conformational Differences BetweenC- andO-Glycosides: Theα-C-Mannobiose/α-O-Mannobiose Case. Chemistry - A European Journal, 1999, 5, 442-448.	3.3	50
130	Synthesis and Self-Association of syn-5,10,15-Trialkylated Truxenes. Chemistry - A European Journal, 2002, 8, 2879.	3.3	50
131	A Simple Structural-Based Approach to Prevent Aminoglycoside Inactivation by Bacterial Defense Proteins. Conformational Restriction Provides Effective Protection against Neomycin-B Nucleotidylation by ANT4. Journal of the American Chemical Society, 2005, 127, 8278-8279.	13.7	50
132	A Chiral Pyrrolic Tripodal Receptor Enantioselectively Recognizes βâ€Mannose and βâ€Mannosides. Chemistry - A European Journal, 2010, 16, 414-418.	3.3	50
133	A New Combined Computational and NMR-Spectroscopical Strategy for the Identification of Additional Conformational Constraints of the Bound Ligand in an Aprotic Solvent. ChemBioChem, 2000, 1, 181-195.	2.6	49
134	Application of the Anomeric Samarium Route for the Convergent Synthesis of theC-Linked Trisaccharide α-d-Man-(1→3)-[α-d-Man-(1→6)]-d-Man and the Disaccharides α-d-Man-(1→3)-d-Man and α-d-Man-(1→6)-d-Man. Journal of Organic Chemistry, 2002, 67, 6297-6308.	3.2	49
135	Hydrogen-Bonding Cooperativity: Using an Intramolecular Hydrogen Bond To Design a Carbohydrate Derivative with a Cooperative Hydrogen-Bond Donor Centre. Chemistry - A European Journal, 2004, 10, 4240-4251.	3.3	49
136	Molecular Recognition in Câ€Type Lectins: The Cases of DCâ€SIGN, Langerin, MGL, and Lâ€Sectin. ChemBioChem, 2020, 21, 2999-3025.	2.6	49
137	Synthesis, complexing properties and applications in asymmetric synthesis of bis18-crown-6 compounds. Tetrahedron, 1988, 44, 1535-1543.	1.9	48
138	The Origin of One-Bond C-H Coupling Constants in OCH Fragments: Not Primarily nO→\${{m sigma} {{ast hfill atop {m CH}hfill}}} Delocalization. Angewandte Chemie - International Edition, 2005, 44, 2360-2364.	13.8	48
139	A thorough experimental study of CH/π interactions in water: quantitative structure–stability relationships for carbohydrate/aromatic complexes. Chemical Science, 2015, 6, 6076-6085.	7.4	48
140	NMR Experiments Reveal Distinct Antibody-Bound Conformations of a Synthetic Disaccharide Representing a General Structural Element of Bacterial Lipopolysaccharide Epitopes. Biochemistry, 1999, 38, 6449-6459.	2.5	47
141	N-domain of human adhesion/growth-regulatory galectin-9: Preference for distinct conformers and non-sialylated N-glycans and detection of ligand-induced structural changes in crystal and solution. International Journal of Biochemistry and Cell Biology, 2010, 42, 1019-1029.	2.8	47
142	Symmetric dithiodigalactoside: strategic combination of binding studies and detection of selectivity between a plant toxin and human lectins. Organic and Biomolecular Chemistry, 2011, 9, 5445.	2.8	47
143	Breaking the Limits in Analyzing Carbohydrate Recognition by NMR Spectroscopy: Resolving Branchâ€Selective Interaction of a Tetraâ€Antennary <i>N</i> â€Glycan with Lectins. Angewandte Chemie - International Edition, 2017, 56, 14987-14991.	13.8	47
144	NMR investigations of protein-carbohydrate interactions. FEBS Journal, 2000, 267, 3965-3978.	0.2	46

#	Article	IF	CITATIONS
145	Insights into the Interaction of Discodermolide and Docetaxel with Tubulin. Mapping the Binding Sites of Microtubule-Stabilizing Agents by Using an Integrated NMR and Computational Approach. ACS Chemical Biology, 2011, 6, 789-799.	3.4	46
146	A Dynamic Combinatorial Approach for the Analysis of Weak Carbohydrate/Aromatic Complexes: Dissecting Facial Selectivity in CH/İ€ Stacking Interactions. Journal of the American Chemical Society, 2013, 135, 3347-3350.	13.7	46
147	Delineating Binding Modes of Gal/GalNAc and Structural Elements of the Molecular Recognition of Tumorâ€Associated Mucin Glycopeptides by the Human Macrophage Galactoseâ€Type Lectin. Chemistry - A European Journal, 2014, 20, 16147-16155.	3.3	46
148	Exploring GPTMS reactivity against simple nucleophiles: chemistry beyond hybrid materials fabrication. RSC Advances, 2014, 4, 1841-1848.	3.6	46
149	From dual binding site acetylcholinesterase inhibitors to allosteric modulators: A new avenue for disease-modifying drugs in Alzheimer's disease. European Journal of Medicinal Chemistry, 2017, 139, 773-791.	5.5	46
150	Glycosyl Oxocarbenium Ions: Structure, Conformation, Reactivity, and Interactions. Accounts of Chemical Research, 2021, 54, 2552-2564.	15.6	46
151	Experimental evidence of deviations from a Karplus-like relationship of vicinal carbon-proton coupling constants in some conformationally rigid carbohydrate derivatives. Journal of Organic Chemistry, 1987, 52, 3367-3372.	3.2	45
152	Mulinic and isomulinic acids. Rearranged diterpenes with a new carbon skeleton from mulinum crassifolium. Tetrahedron, 1990, 46, 5413-5420.	1.9	44
153	Conformational differences between Fuc(α1–3)ClcNAc and its thioglycoside analogue. Carbohydrate Research, 1998, 308, 19-27.	2.3	44
154	The Pattern of Distribution of Amino Groups Modulates the Structure and Dynamics of Natural Aminoglycosides:  Implications for RNA Recognition. Journal of the American Chemical Society, 2007, 129, 2849-2865.	13.7	44
155	Modulation of CD14 and TLR4â‹MDâ€⊋ Activities by a Synthetic Lipid A Mimetic. ChemBioChem, 2014, 15, 250-258.	2.6	44
156	Structural aspects of binding of α-linked digalactosides to human galectin-1. Glycobiology, 2011, 21, 1627-1641.	2.5	43
157	NMR and molecular recognition. The application of ligand-based NMR methods to monitor molecular interactions. MedChemComm, 2014, 5, 1280-1289.	3.4	43
158	Targeting Galectins With Glycomimetics. Frontiers in Chemistry, 2020, 8, 593.	3.6	43
159	Substrate specificity of small-intestinal lactase. Assessment of the role of the substrate hydroxyl groups. FEBS Journal, 1992, 209, 415-422.	0.2	42
160	A comparison of the geometry and of the energy results obtained by application of different molecular mechanics force fields to methyl α-lactoside and the C-analogue of lactose. Carbohydrate Research, 1997, 298, 15-49.	2.3	42
161	NMR studies of the conformation of thiocellobiose bound to a β-glucosidase from Streptomyces sp. FEBS Letters, 1998, 421, 243-248.	2.8	42
162	Lactose binding to human galectin-7 (p53-induced gene 1) induces long-range effects through the protein resulting in increased dimer stability and evidence for positive cooperativity. Glycobiology, 2013, 23, 508-523.	2.5	42

#	Article	IF	CITATIONS
163	Oligosaccharides Structurally Related to E-Selectin Ligands Are Inhibitors of Neural Cell Division: Synthesis, Conformational Analysis, and Biological Activity. Journal of Organic Chemistry, 1995, 60, 1502-1519.	3.2	41
164	Fluorinated Carbohydrates as Lectin Ligands: Synthesis of OH/Fâ€Substituted <i>N</i> â€Glycan Core Trimannoside and Epitope Mapping by 2D STDâ€TOCSYreFâ€NMR spectroscopy. Chemistry - A European Journal, 2018, 24, 15761-15765.	3.3	41
165	Structural and Computational Analysis of 2â€Halogenoâ€Glycosyl Cations in the Presence of a Superacid: An Expansive Platform. Angewandte Chemie - International Edition, 2019, 58, 13758-13762.	13.8	41
166	Experimental and theoretical evidences of conformational flexibility of C-glycosides. NMR analysis and molecular mechanics calculations of C-lactose and its O-analogue. Tetrahedron Letters, 1995, 36, 6329-6332.	1.4	40
167	Structural Requirements for Multimerization of the Pathogen Receptor Dendritic Cell-specific ICAM3-grabbing Non-integrin (CD209) on the Cell Surface. Journal of Biological Chemistry, 2008, 283, 3889-3903.	3.4	40
168	Heparin Modulates the Mitogenic Activity of Fibroblast Growth Factor by Inducing Dimerization of its Receptor. A 3D View by Using NMR. ChemBioChem, 2013, 14, 1732-1744.	2.6	40
169	Diametrically Opposed Carbenes on an α yclodextrin: Synthesis, Characterization of Organometallic Complexes and Suzuki–Miyaura Coupling in Ethanol and in Water. European Journal of Organic Chemistry, 2013, 2013, 3691-3699.	2.4	40
170	Supramolecular pseudo-rotaxane type complexes from π-extended TTF dimer crown ether and C60. Tetrahedron, 2006, 62, 1998-2002.	1.9	39
171	αâ€ <i>O</i> â€Linked Glycopeptide Mimetics: Synthesis, Conformation Analysis, and Interactions with Viscumin, a Galactosideâ€Binding Model Lectin. Chemistry - A European Journal, 2009, 15, 10423-10431.	3.3	39
172	Exploiting the Therapeutic Potential of 8-β- <scp>d</scp> -Glucopyranosylgenistein: Synthesis, Antidiabetic Activity, and Molecular Interaction with Islet Amyloid Polypeptide and Amyloid β-Peptide (1–42). Journal of Medicinal Chemistry, 2014, 57, 9463-9472.	6.4	39
173	Detection of Tumor-Associated Glycopeptides by Lectins: The Peptide Context Modulates Carbohydrate Recognition. ACS Chemical Biology, 2015, 10, 747-756.	3.4	39
174	Modelling studies of solvent effects on the conformational stability of agarobiose and neoagarobiose and their relationship to agarose. International Journal of Biological Macromolecules, 1989, 11, 265-272.	7.5	38
175	"Click―Saccharide/β-Lactam Hybrids for Lectin Inhibition. Organic Letters, 2008, 10, 2227-2230.	4.6	38
176	Systematic Dissection of an Aminopyrrolic Cage Receptor for βâ€Glucopyranosides Reveals the Essentials for Effective Recognition. Chemistry - A European Journal, 2014, 20, 6081-6091.	3.3	38
177	Determination, by NMR spectroscopy, of the structure of ciceritol, a pseudotrisaccharide isolated from lentils. Journal of Agricultural and Food Chemistry, 1993, 41, 870-872.	5.2	37
178	Structure of complex cell wall polysaccharides isolated from Trichoderma and Hypocrea species. Carbohydrate Research, 1997, 304, 281-291.	2.3	37
179	Light-Induced Aminocarbene to Imine Dyotropic Rearrangement in a Chromium(0) Center:  An Unprecedented Reaction Pathway. Journal of the American Chemical Society, 2003, 125, 9572-9573.	13.7	37
180	Molecular Recognition of Complex-Type Biantennary <i>N</i> -Glycans by Protein Receptors: a Three-Dimensional View on Epitope Selection by NMR. Journal of the American Chemical Society, 2013, 135, 2667-2675.	13.7	37

JESUS JIMENEZ-BARBERO

#	Article	IF	CITATIONS
181	The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. Nature Communications, 2017, 8, 1959.	12.8	37
182	Molecular Insights into DC-SIGN Binding to Self-Antigens: The Interaction with the Blood Group A/B Antigens. ACS Chemical Biology, 2019, 14, 1660-1671.	3.4	37
183	Structural studies of fungal cell-wall polysaccharides from two strains of Talaromyces flavus. Carbohydrate Research, 1994, 251, 315-325.	2.3	36
184	Synthesis and Conformational Analysis of a Conformationally Constrained Trisaccharide, and Complexation Properties with Concanavalin A. Chemistry - A European Journal, 1999, 5, 2281-2294.	3.3	36
185	Differences among the cell wall galactomannans from Aspergillus wentii and Chaetosartorya chrysella and that of Aspergillus fumigatus. Glycoconjugate Journal, 2003, 20, 239-246.	2.7	36
186	Effect of β-O-Glucosylation onL-Ser andL-Thr Diamides: A Bias toward α-Helical Conformations. Chemistry - A European Journal, 2006, 12, 7864-7871.	3.3	36
187	A rigid lanthanide binding tag for NMR structural analysis of carbohydrates. Chemical Communications, 2011, 47, 7179.	4.1	36
188	<i>gem</i> â€Difluorocarbadisaccharides: Restoring the <i>exo</i> â€Anomeric Effect. Angewandte Chemie - International Edition, 2014, 53, 9597-9602.	13.8	36
189	Serine versus Threonine Glycosylation with αâ€ <i>O</i> â€GalNAc: Unexpected Selectivity in Their Molecular Recognition with Lectins. Chemistry - A European Journal, 2014, 20, 12616-12627.	3.3	36
190	Complete Dynamic Reconstruction of C ₆₀ , C ₇₀ , and (C ₅₉ N) ₂ Encapsulation into an Adaptable Supramolecular Nanocapsule. Journal of the American Chemical Society, 2020, 142, 16051-16063.	13.7	36
191	Chemical and enzymatic diastereoselective cleavage of β-d-galactopyranosylsulfoxides. Tetrahedron Letters, 1997, 38, 8267-8270.	1.4	35
192	Carbohydrate Chain of Ganglioside GM1 as a Ligand: Identification of the Binding Strategies of Three 15 mer Peptides and Their Divergence from the Binding Modes of Growth-Regulatory Galectin-1 and Cholera Toxin. Chemistry - A European Journal, 2006, 12, 388-402.	3.3	35
193	Chiral Diaminopyrrolic Receptors for Selective Recognition of Mannosides, Part 2: A 3D View of the Recognition Modes by Xâ€ray, NMR Spectroscopy, and Molecular Modeling. Chemistry - A European Journal, 2011, 17, 4821-4829.	3.3	35
194	Saturation Transfer Difference NMR Experiments of Membrane Proteins in Living Cells under HRâ€MAS Conditions: The Interaction of the SGLT1 Coâ€transporter with Its Ligands. Chemistry - A European Journal, 2011, 17, 13395-13399.	3.3	35
195	Structure of micelleâ€bound adrenomedullin: A first step toward the analysis of its interactions with receptors and small molecules. Biopolymers, 2012, 97, 45-53.	2.4	35
196	Taxanes with high potency inducing tubulin assembly overcome tumoural cell resistances. Bioorganic and Medicinal Chemistry, 2014, 22, 5078-5090.	3.0	35
197	The Quest for Anticancer Vaccines: Deciphering the Fine-Epitope Specificity of Cancer-Related Monoclonal Antibodies by Combining Microarray Screening and Saturation Transfer Difference NMR. Journal of the American Chemical Society, 2015, 137, 12438-12441.	13.7	35
198	Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment. Chemical Science, 2016, 7, 2294-2301.	7.4	35

#	Article	IF	CITATIONS
199	NMR and Molecular Recognition of N-Glycans: Remote Modifications of the Saccharide Chain Modulate Binding Features. ACS Chemical Biology, 2017, 12, 1104-1112.	3.4	35
200	Structural and Mechanistic Insights into the Catalytic-Domain-Mediated Short-Range Glycosylation Preferences of GalNAc-T4. ACS Central Science, 2018, 4, 1274-1290.	11.3	35
201	Conformational Analysis of a Dermatan Sulfateâ€Derived Tetrasaccharide by NMR, Molecular Modeling, and Residual Dipolar Couplings. ChemBioChem, 2008, 9, 240-252.	2.6	34
202	Molecular Recognition of Rosmarinic Acid from <i>Salviaâ€sclareoides</i> Extracts by Acetylcholinesterase: A New Binding Site Detected by NMR Spectroscopy. Chemistry - A European Journal, 2013, 19, 6641-6649.	3.3	34
203	Quillaja saponin variants with central glycosidic linkage modifications exhibit distinct conformations and adjuvant activities. Chemical Science, 2016, 7, 2371-2380.	7.4	34
204	Unraveling Sugar Binding Modes to DC-SIGN by Employing Fluorinated Carbohydrates. Molecules, 2019, 24, 2337.	3.8	34
205	An Epoxide Intermediate in Glycosidase Catalysis. ACS Central Science, 2020, 6, 760-770.	11.3	34
206	Structure and Function of Prokaryotic UDP-Glucose Pyrophosphorylase, A Drug Target Candidate. Current Medicinal Chemistry, 2015, 22, 1687-1697.	2.4	34
207	Fluoroacetamide Moieties as NMR Spectroscopy Probes for the Molecular Recognition of GlcNAcâ€Containing Sugars: Modulation of the CH–π Stacking Interactions by Different Fluorination Patterns. Chemistry - A European Journal, 2017, 23, 3957-3965.	3.3	33
208	The Use of Fluoroproline in MUC1 Antigen Enables Efficient Detection of Antibodies in Patients with Prostate Cancer. Journal of the American Chemical Society, 2017, 139, 18255-18261.	13.7	33
209	Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. Journal of the American Chemical Society, 2018, 140, 9952-9960.	13.7	33
210	Probing hydrogen-bonding interactions of bovine heart galectin-1 and methyl beta-lactoside by use of engineered ligands. FEBS Journal, 1994, 223, 107-114.	0.2	32
211	1D Saturation Transfer Difference NMR Experiments on Living Cells: The DC-SIGN/Oligomannose Interaction. Angewandte Chemie, 2005, 117, 300-302.	2.0	32
212	Molecular Recognition and Screening Using a15N Group Selective STD NMR Method. Journal of the American Chemical Society, 2007, 129, 11579-11582.	13.7	32
213	Stereochemical Assignment and First Synthesis of the Core of Miharamycin Antibiotics. Chemistry - A European Journal, 2008, 14, 10066-10073.	3.3	32
214	Assessing Carbohydrate–Carbohydrate Interactions by NMR Spectroscopy: The Trisaccharide Epitope from the Marine Sponge <i>Microciona prolifera</i> . ChemBioChem, 2009, 10, 511-519.	2.6	32
215	Why Structurally Different Cyclic Peptides Can Be Glycomimetics of the HNK-1 Carbohydrate Antigen. Journal of the American Chemical Society, 2010, 132, 96-105.	13.7	32
216	Conformational Selection of the AGA*IA _M Heparin Pentasaccharide when Bound to the Fibroblast Growth Factor Receptor. Chemistry - A European Journal, 2011, 17, 11204-11209.	3.3	32

#	Article	IF	CITATIONS
217	Morphological characteristics and composition of lipophilic extractives and lignin in Brazilian woods from different eucalypt hybrids. Industrial Crops and Products, 2012, 36, 572-583.	5.2	32
218	Mechanistic Insight into the Binding of Multivalent Pyrrolidines to αâ€Mannosidases. Chemistry - A European Journal, 2017, 23, 14585-14596.	3.3	32
219	Current Status on Therapeutic Molecules Targeting Siglec Receptors. Cells, 2020, 9, 2691.	4.1	32
220	Structural investigation of two cell-wall polysaccharides of Penicillium expansum strains. Carbohydrate Research, 1994, 257, 239-248.	2.3	31
221	NMR investigations of protein–carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and β-galactosyl xyloses to mistletoe lectin and galectin-1. Biochimica Et Biophysica Acta - General Subjects, 2001, 1568, 225-236.	2.4	31
222	Second-Generation Mimics of Ganglioside GM1 Oligosaccharide: A Three-Dimensional View of Their Interactions with Bacterial Enterotoxins by NMR and Computational Methods. Chemistry - A European Journal, 2002, 8, 4597-4612.	3.3	31
223	Mimics of ganglioside GM1 as cholera toxin ligands: replacement of the GalNAc residueElectronic supplementary information (ESI) available: synthetic details, product characterisations and full NOE contact list. See http://www.rsc.org/suppdata/ob/b2/b210503a/. Organic and Biomolecular Chemistry, 2003. 1. 785-792.	2.8	31
224	Carbohydrate-Based DNA Ligands:Â Sugarâ `Oligoamides as a Tool to Study Carbohydrateâ `Nucleic Acid Interactions. Journal of the American Chemical Society, 2005, 127, 9518-9533.	13.7	31
225	Useful applications of DOSY experiments for the study of mushroom polysaccharides. Carbohydrate Research, 2006, 341, 84-89.	2.3	31
226	Synthesis of β-C-galacto-Pyranosides with Fluorine on the Pseudoanomeric Substituent. Organic Letters, 2007, 9, 1441-1444.	4.6	31
227	Application of NMR methods to the study of the interaction of natural products with biomolecular receptors. Natural Product Reports, 2011, 28, 1118.	10.3	31
228	Studies Related to Norway Spruce Galactoglucomannans: Chemical Synthesis, Conformation Analysis, NMR Spectroscopic Characterization, and Molecular Recognition of Model Compounds. Chemistry - A European Journal, 2012, 18, 14392-14405.	3.3	31
229	Thermodynamic Switch in Binding of Adhesion/Growth Regulatory Human Galectin-3 to Tumor-Associated TF Antigen (CD176) and MUC1 Glycopeptides. Biochemistry, 2015, 54, 4462-4474.	2.5	31
230	Glycoprofile Analysis of an Intact Glycoprotein As Inferred by NMR Spectroscopy. ACS Central Science, 2019, 5, 1554-1561.	11.3	31
231	Competitive Inhibitors of <i>Helicobacter pylori</i> Typeâ€II Dehydroquinase: Synthesis, Biological Evaluation, and NMR Studies. ChemMedChem, 2008, 3, 756-770.	3.2	30
232	Lectinâ€Based Drug Design: Combined Strategy to Identify Lead Compounds using STD NMR Spectroscopy, Solidâ€Phase Assays and Cell Binding for a Plant Toxin Model. ChemMedChem, 2010, 5, 415-419.	3.2	30
233	Lysine <i>N</i> ^ε -Trimethylation, a Tool for Improving the Selectivity of Antimicrobial Peptides. Journal of Medicinal Chemistry, 2010, 53, 5587-5596.	6.4	30
234	Stereoselective Formation of Chiral Metallopeptides. Chemistry - A European Journal, 2012, 18, 7030-7035.	3.3	30

#	Article	IF	CITATIONS
235	Molecular Recognition of Epothilones by Microtubules and Tubulin Dimers Revealed by Biochemical and NMR Approaches. ACS Chemical Biology, 2014, 9, 1033-1043.	3.4	30
236	Enzymatic Synthesis of a Novel Neuroprotective Hydroxytyrosyl Glycoside. Journal of Agricultural and Food Chemistry, 2017, 65, 10526-10533.	5.2	30
237	Structural Basis of Noscapine Activation for Tubulin Binding. Journal of Medicinal Chemistry, 2020, 63, 8495-8501.	6.4	30
238	A convergent synthesis of α-C-1,3-mannobioside via Sml2-promoted C-glycosylation. Tetrahedron Letters, 1999, 40, 7565-7568.	1.4	29
239	Synthesis, Conformational Studies and Mannosidase Stability of a Mimic of 1,2-Mannobioside. European Journal of Organic Chemistry, 2004, 2004, 5119-5225.	2.4	29
240	Insights into the Geometrical Features Underlying βâ€∢i>Oâ€GlcNAc Glycosylation: Water Pockets Drastically Modulate the Interactions between the Carbohydrate and the Peptide Backbone. Chemistry - A European Journal, 2009, 15, 7297-7301.	3.3	29
241	An asparagine/tryptophan organogel showing a selective response towards fluoride anions. Journal of Materials Chemistry, 2011, 21, 8862.	6.7	29
242	Conformational Studies of the Man8 Oligosaccharide on Native Ribonuclease B and on the Reduced and Denatured Protein. Archives of Biochemistry and Biophysics, 2000, 383, 17-27.	3.0	28
243	Modulation of Microtubule Interprotofilament Interactions by Modified Taxanes. Biophysical Journal, 2011, 101, 2970-2980.	0.5	28
244	Interactions of Bacterial Cell Division Protein FtsZ with C8-Substituted Guanine Nucleotide Inhibitors. A Combined NMR, Biochemical and Molecular Modeling Perspective. Journal of the American Chemical Society, 2013, 135, 16418-16428.	13.7	28
245	Fluorinated Carbohydrates as Lectin Ligands: 19F-Based Direct STD Monitoring for Detection of Anomeric Selectivity. Biomolecules, 2015, 5, 3177-3192.	4.0	28
246	Modulating Weak Interactions for Molecular Recognition: A Dynamic Combinatorial Analysis for Assessing the Contribution of Electrostatics to the Stability of CH–Ĩ€ Bonds in Water. Angewandte Chemie - International Edition, 2015, 54, 4344-4348.	13.8	28
247	Synthesis and Structural Analysis of <i>Aspergillus fumigatus</i> Galactosaminogalactans Featuring αâ€Galactose, αâ€Galactosamine and αâ€ <i>N</i> â€Acetyl Galactosamine Linkages. Angewandte Chemie - International Edition, 2020, 59, 12746-12750.	13.8	28
248	Studies of the molecular recognition of synthetic methyl β-lactoside analogues by Ricinus communis agglutinin. Carbohydrate Research, 1992, 232, 207-226.	2.3	27
249	Structural analysis of the O-antigen of the lipopolysaccharide of Rhizobium tropici CIAT899. Carbohydrate Research, 1995, 275, 285-294.	2.3	27
250	Effect of 2′-OH acetylation on the bioactivity and conformation of 7- O -[N -(4′-fluoresceincarbonyl)- l -alanyl]taxol. A NMR-fluorescence microscopy study. Bioorganic and Medicinal Chemistry, 1998, 6, 1857-1863.	3.0	27
251	The Conformational Behavior of Novel Glycosidase Inhibitors with Substituted Azepan Structures: An NMR and Modeling Study. European Journal of Organic Chemistry, 2004, 2004, 4119-4129.	2.4	27
252	Theoretical Study of Inversion and Topomerization Processes of Substituted Cyclohexanes: The Relevance of the Energy 3D Hypersurface. ChemPhysChem, 2005, 6, 671-680.	2.1	27

#	Article	IF	CITATIONS
253	Temperature dependence of ligand–protein complex formation as reflected by saturation transfer difference NMR experiments. Magnetic Resonance in Chemistry, 2007, 45, 745-748.	1.9	27
254	Molecular Recognition of the Thomsen-Friedenreich Antigen–Threonine Conjugate by Adhesion/Growth Regulatory Galectin-3: Nuclear Magnetic Resonance Studies and Molecular Dynamics Simulations. Biochemistry, 2012, 51, 7278-7289.	2.5	27
255	Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR. ACS Chemical Biology, 2013, 8, 144-151.	3.4	27
256	Selectfluor and NFSI <i>exo</i> â€Glycal Fluorination Strategies Applied to the Enhancement of the Binding Affinity of Galactofuranosyltransferase Gl <i>f</i> T2 Inhibitors. Chemistry - A European Journal, 2014, 20, 15208-15215.	3.3	27
257	Selective Synthesis of Galactooligosaccharides Containing β(1→3) Linkages with β-Galactosidase from <i>Bifidobacterium bifidum</i> (Saphera). Journal of Agricultural and Food Chemistry, 2020, 68, 4930-4938.	5.2	27
258	Mulinenic Acid, a Rearranged Diterpenoid from Mulinum crassifolium. Journal of Natural Products, 1991, 54, 1404-1408.	3.0	26
259	Structural investigation of a cell-wall galactomannan from Neurospora crassa and N. sitophila. Carbohydrate Research, 1996, 283, 215-222.	2.3	26
260	Synthesis and conformational behavior of the difluoromethylene linked C-glycoside analog of β-galactopyranosyl-(1↔1)-α-mannopyranoside. Carbohydrate Research, 2007, 342, 1624-1635.	2.3	26
261	On the role of aromatic-sugar interactions in the molecular recognition of carbohydrates: A 3D view by using NMR. Pure and Applied Chemistry, 2008, 80, 1827-1835.	1.9	26
262	Structures of wall heterogalactomannans isolated from three genera of entomopathogenic fungi. Fungal Biology, 2011, 115, 862-870.	2.5	26
263	Structural and Biochemical Characterization of the Interaction of Tubulin with Potent Natural Analogues of Podophyllotoxin. Journal of Natural Products, 2016, 79, 2113-2121.	3.0	26
264	Detailed Investigation of the Immunodominant Role of Oâ€Antigen Stoichiometric Oâ€Acetylation as Revealed by Chemical Synthesis, Immunochemistry, Solution Conformation and STDâ€NMR Spectroscopy for <i>Shigella flexneri</i> â€3a. Chemistry - A European Journal, 2016, 22, 10892-10911.	3.3	26
265	Impact of Aromatic Stacking on Glycoside Reactivity: Balancing CH/Ï€ and Cation/Ï€ Interactions for the Stabilization of Glycosyl-Oxocarbenium Ions. Journal of the American Chemical Society, 2019, 141, 13372-13384.	13.7	26
266	Substrate specificity of small-intestinal lactase: Study of the steric effects and hydrogen bonds involved in enzyme-substrate interaction. Carbohydrate Research, 1995, 271, 31-42.	2.3	25
267	NMR Study of Intramolecular Interactions between Aromatic Groups:Â Van der Waals, Charge-Transfer, or Quadrupolar Interactions?. Journal of the American Chemical Society, 1998, 120, 9632-9645.	13.7	25
268	Structural differences between the alkali-extracted water-soluble cell wall polysaccharides from mycelial and yeast phases of the pathogenic dimorphic fungus Paracoccidioides brasiliensis. Glycobiology, 2003, 13, 743-747.	2.5	25
269	Protein molecular weight standards can compensate systematic errors in diffusion-ordered spectroscopy. Analytical Biochemistry, 2004, 331, 395-397.	2.4	25
270	Toward the understanding of the structure and dynamics of protein–carbohydrate interactions: molecular dynamics studies of the complexes between hevein and oligosaccharidic ligands. Carbohydrate Research, 2004, 339, 985-994.	2.3	25

#	Article	IF	CITATIONS
271	Insights on the conformational properties of hyaluronic acid by using NMR residual dipolar couplings and MD simulations. Glycobiology, 2010, 20, 1208-1216.	2.5	25
272	Tubulin Binding, Protein-Bound Conformation in Solution, and Antimitotic Cellular Profiling of Noscapine and Its Derivatives. Journal of Medicinal Chemistry, 2012, 55, 1920-1925.	6.4	25
273	Structure and Sialyllactose Binding of the Carboxy-Terminal Head Domain of the Fibre from a Siadenovirus, Turkey Adenovirus 3. PLoS ONE, 2015, 10, e0139339.	2.5	25
274	Unraveling the Conformational Landscape of Ligand Binding to Glucose/Galactose-Binding Protein by Paramagnetic NMR and MD Simulations. ACS Chemical Biology, 2016, 11, 2149-2157.	3.4	25
275	The SARS oVâ€2 Spike Glycoprotein Directly Binds Exogeneous Sialic Acids: A NMR View. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
276	Application of vicinal carbon-proton coupling constants to the conformational analysis of benzylidene-type acetals of 1,6-anhydro-l²-d-hexopyranoses. Carbohydrate Research, 1986, 155, 1-10.	2.3	24
277	Chemical structure of fungal cell-wall polysaccharides isolated from Microsporum gypseum and related species of Microsporum and Trychophyton. Carbohydrate Research, 1995, 272, 121-128.	2.3	24
278	Conformational Behavior ofC-Glycosyl Analogues of Sialyl-α-(2→3)-Galactose. European Journal of Organic Chemistry, 2000, 2000, 1805-1813.	2.4	24
279	Synthesis of Carba- and C-Fucopyranosides and Their Evaluation as α-Fucosidase Inhibitors â^ Analysis of an Unusual Conformation Adopted by an Amino-C-fucopyranoside. European Journal of Organic Chemistry, 2001, 2001, 4127-4135.	2.4	24
280	Sugar-Derived Ras Inhibitors: Group Epitope Mapping by NMR Spectroscopy and Biological Evaluation. European Journal of Organic Chemistry, 2006, 2006, 3707-3720.	2.4	24
281	CgNa, a typeÂl toxin from the giant Caribbean sea anemone <i>Condylactis gigantea</i> shows structural similarities to both typeÂl and II toxins, as well as distinctive structural and functional properties. Biochemical Journal, 2007, 406, 67-76.	3.7	24
282	The conformational behaviour and P-selectin inhibition of fluorine-containing sialyl LeX glycomimetics. Organic and Biomolecular Chemistry, 2007, 5, 1087-1092.	2.8	24
283	gem-Difluoro-carbasugars, the cases of mannopyranose and galactopyranose. Carbohydrate Research, 2007, 342, 1689-1703.	2.3	24
284	Competition Saturation Transfer Difference Experiments Improved with Isotope Editing and Filtering Schemes in NMR-Based Screening. Journal of the American Chemical Society, 2008, 130, 17148-17153.	13.7	24
285	Rational design of a Tn antigen mimic. Chemical Communications, 2011, 47, 5319.	4.1	24
286	Review: use of residual dipolar couplings to determine the structure of carbohydrates. Magnetic Resonance in Chemistry, 2012, 50, S80-5.	1.9	24
287	Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner. Biochemical and Biophysical Research Communications, 2014, 443, 126-131.	2.1	24
288	Importance of the polarity of the glycosaminoglycan chain on the interaction with FGF-1. Glycobiology, 2014, 24, 1004-1009.	2.5	24

#	Article	IF	CITATIONS
289	Insights on the Interaction between Transthyretin and AÎ ² in Solution. A Saturation Transfer Difference (STD) NMR Analysis of the Role of Iododiflunisal. Journal of Medicinal Chemistry, 2017, 60, 5749-5758.	6.4	24
290	The Plasticity of the Carbohydrate Recognition Domain Dictates the Exquisite Mechanism of Binding of Human Macrophage Galactoseâ€Type Lectin. Chemistry - A European Journal, 2019, 25, 13945-13955.	3.3	24
291	Novel carboxylate-based glycolipids: TLR4 antagonism, MD-2 binding and self-assembly properties. Scientific Reports, 2019, 9, 919.	3.3	24
292	Fluorinated Carbohydrates as Lectin Ligands: Simultaneous Screening of a Monosaccharide Library and Chemical Mapping by ¹⁹ F NMR Spectroscopy. Journal of Organic Chemistry, 2020, 85, 16072-16081.	3.2	24
293	Insight into the Ferrier Rearrangement by Combining Flash Chemistry and Superacids. Angewandte Chemie - International Edition, 2021, 60, 2036-2041.	13.8	24
294	Hypoxia reduces cell attachment of SARS-CoV-2 spike protein by modulating the expression of ACE2, neuropilin-1, syndecan-1 and cellular heparan sulfate. Emerging Microbes and Infections, 2021, 10, 1065-1076.	6.5	24
295	Conformational dependence of pyranoid rings 1,2fused to dioxolane rings on the configuration of the dioxolane rings in acetylated derivati. Tetrahedron, 1985, 41, 3875-3886.	1.9	23
296	Synthesis and Conformational Analysis of Fructose-Derived Scaffolds: Molecular Diversity from a Single Molecule. Chemistry - A European Journal, 2002, 8, 3976-3983.	3.3	23
297	NMR experiments for the measurement of proton-proton and carbon-carbon residual dipolar couplings in uniformly labelled oligosaccharides. Journal of Biomolecular NMR, 2003, 26, 345-353.	2.8	23
298	Hetaryleneaminopolyols and Hetarylenecarbopeptoids:  a New Type of Glyco- and Peptidomimetics. Syntheses and Studies on Solution Conformation and Dynamics. Journal of Organic Chemistry, 2003, 68, 4138-4150.	3.2	23
299	Describing Topology of Bound Ligand by Transferred Nuclear Overhauser Effect Spectroscopy and Molecular Modeling. Methods in Enzymology, 2003, 362, 417-434.	1.0	23
300	Screening by NMR: A New Approach for the Study of Bioactive Natural Products? The Example ofPleurotus ostreatusHot Water Extract. European Journal of Organic Chemistry, 2005, 2005, 1392-1396.	2.4	23
301	A simple NMR analysis of the protonation equilibrium that accompanies aminoglycoside recognition: Dramatic alterations in the neomycin-B protonation state upon binding to a 23-mer RNA aptamer. Chemical Communications, 2007, , 174-176.	4.1	23
302	The conformation of the C-glycosyl analogue of N-acetyl-lactosamine in the free state and bound to a toxic plant agglutinin and human adhesion/growth-regulatory galectin-1. Carbohydrate Research, 2007, 342, 1918-1928.	2.3	23
303	Selective Recognition of βâ€Mannosides by Synthetic Tripodal Receptors: A 3D View of the Recognition Mode by NMR. European Journal of Organic Chemistry, 2010, 2010, 64-71.	2.4	23
304	Avenues to Characterize the Interactions of Extended Nâ€Glycans with Proteins by NMR Spectroscopy: The Influenza Hemagglutinin Case. Angewandte Chemie - International Edition, 2018, 57, 15051-15055.	13.8	23
305	4-O-β-spD-Galactopyranosyl-spD-xylose: A new synthesis and application to the evaluation of intestinal lactase. Carbohydrate Research, 1992, 228, 129-135.	2.3	22
306	Structural investigation of cell-wall polysaccharides from Neosartorya: relationships with their putative anamorphs of Aspergillus. Carbohydrate Research, 1995, 273, 255-262.	2.3	22

#	Article	IF	CITATIONS
307	Conformational flexibility of C-glycosides: Experimental evidence of the existence of a gauche-gauche confirmation around the glycosidic linkage for a lactose analogue. Tetrahedron Letters, 1996, 37, 1467-1470.	1.4	22
308	Experimental Evidence for the Existence of Non-exo-Anomeric Conformations in Branched Oligosaccharides: NMR Analysis of the Structure and Dynamics of Aminoglycosides of the Neomycin Family. Chemistry - A European Journal, 2002, 8, 5228-5240.	3.3	22
309	Enzymatic synthesis of complex glycosaminotrioses and study of their molecular recognition by hevein domains. Organic and Biomolecular Chemistry, 2004, 2, 1987-1994.	2.8	22
310	The Nature and Sequence of the Amino Acid Aglycone Strongly Modulates the Conformation and Dynamics Effects of Tn Antigen's Clusters. Chemistry - A European Journal, 2009, 15, 3863-3874.	3.3	22
311	Effect of a serine-to-aspartate replacement on the recognition of chitin oligosaccharides by truncated hevein. A 3D view by using NMR. Carbohydrate Research, 2010, 345, 1461-1468.	2.3	22
312	Molecular Recognition of Peloruside A by Microtubules. The C24 Primary Alcohol is Essential for Biological Activity. ChemBioChem, 2010, 11, 1669-1678.	2.6	22
313	A structure-based design of new C2- and C13-substituted taxanes: tubulin binding affinities and extended quantitative structure–activity relationships using comparative binding energy (COMBINE) analysis. Organic and Biomolecular Chemistry, 2013, 11, 3046.	2.8	22
314	Unravelling the Time Scale of Conformational Plasticity and Allostery in Glycan Recognition by Human Galectinâ€1. Chemistry - A European Journal, 2020, 26, 15643-15653.	3.3	22
315	Calorimetric Studies of Binary and Ternary Molecular Interactions between Transthyretin, Aβ Peptides, and Small-Molecule Chaperones toward an Alternative Strategy for Alzheimer's Disease Drug Discovery. Journal of Medicinal Chemistry, 2020, 63, 3205-3214.	6.4	22
316	Structure and conformational features of an alkali- and water-soluble galactofuranan from the cell walls of Eupenicillium crustaceum. Carbohydrate Research, 1993, 244, 361-368.	2.3	21
317	The use of the MM3â^— and ESFF force fields in conformational analysis of carbohydrate molecules in solution: The methyl α-lactoside case. Computational and Theoretical Chemistry, 1997, 395-396, 245-270.	1.5	21
318	Structural elucidation of acidic fungal polysaccharides isolated from the cell-wall of genera Cylindrocladium and Calonectria. Carbohydrate Research, 1997, 303, 67-72.	2.3	21
319	Studies on the structure and the solution conformation of an acidic extracellular polysaccharide isolated from Bradyrhizobium. Carbohydrate Research, 1997, 304, 209-217.	2.3	21
320	The Relevance of Carbohydrate Hydrogen-Bonding Cooperativity Effects: A Cooperative 1,2-trans-Diaxial Diol and Amido Alcohol Hydrogen-Bonding Array as an Efficient Carbohydrate–Phosphate Binding Motif in Nonpolar Media. Chemistry - A European Journal, 2002, 8, 1908.	3.3	21
321	Investigation of the Hydrogen Bonding Properties of a Series of Monosaccharides in Aqueous Media by 1H NMR and IR Spectroscopy. European Journal of Organic Chemistry, 2002, 2002, 1925.	2.4	21
322	Screening of Garlic Water Extract for Binding Activity with Cholera Toxin B Pentamer by NMR Spectroscopy – An Old Remedy Giving a New Surprise. European Journal of Organic Chemistry, 2006, 2006, 2067-2073.	2.4	21
323	Structure of a galactomannan isolated from the cell wall of the fungus Lineolata rhizophorae. Carbohydrate Research, 2007, 342, 2599-2603.	2.3	21
324	Solution Behaviour and Biomolecular Interactions of Two Cytotoxic <i>trans</i> â€Platinum(II) Complexes Bearing Aliphatic Amine Ligands. Chemistry - A European Journal, 2009, 15, 9139-9146.	3.3	21

#	Article	IF	CITATIONS
325	Binding studies of adhesion/growth-regulatory galectins with glycoconjugates monitored by surface plasmon resonance and NMR spectroscopy. Organic and Biomolecular Chemistry, 2010, 8, 2986.	2.8	21
326	New Insights into Glycopeptide Antibiotic Binding to Cell Wall Precursors using SPR and NMR Spectroscopy. Chemistry - A European Journal, 2014, 20, 7363-7372.	3.3	21
327	Structural studies of novel glycoconjugates from polymerized allergens (allergoids) and mannans as allergy vaccines. Glycoconjugate Journal, 2016, 33, 93-101.	2.7	21
328	The two polypeptide chains in fibronectin are joined in antiparallel fashion: NMR structural characterization. Biochemistry, 1992, 31, 9927-9933.	2.5	20
329	Knowledge-based modeling of a legume lectin and docking of the carbohydrate ligand: The Ulex europaeus lectin I and its interaction with fucose. Journal of Molecular Graphics, 1996, 14, 322-327.	1.1	20
330	A Proton-Ionizable Ester Crown of 3,5-Disubstituted 1H-Pyrazole Able To Form Stable Dinuclear Complexes with Lipophilic Phenethylamines. Journal of Organic Chemistry, 1997, 62, 2684-2693.	3.2	20
331	Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by 15N NMR relaxation methods. Journal of Biomolecular NMR, 2006, 35, 225-239.	2.8	20
332	Remote Position Substituents as Modulators of Conformational and Reactive Properties of Quinones. Relevance of the Ï€/Ĩ€ Intramolecular Interaction. Journal of Organic Chemistry, 2007, 72, 1883-1894.	3.2	20
333	Fluorinated Carbohydrates as Lectin Ligands: Biorelevant Sensors with Capacity to Monitor Anomer Affinity in ¹⁹ Fâ€NMRâ€Based Inhibitor Screening. European Journal of Organic Chemistry, 2012, 2012, 4354-4364.	2.4	20
334	<i>Escherichia coli</i> βâ€Galactosidase Inhibitors through Modifications at the Aglyconic Moiety: Experimental Evidence of Conformational Distortion in the Molecular Recognition Process. Chemistry - A European Journal, 2013, 19, 4262-4270.	3.3	20
335	1H, 13C, and 15N backbone and side-chain chemical shift assignments for the 36 proline-containing, full length 29ÂkDa human chimera-type galectin-3. Biomolecular NMR Assignments, 2015, 9, 59-63.	0.8	20
336	Design of α- <i>S</i> -Neoglycopeptides Derived from MUC1 with a Flexible and Solvent-Exposed Sugar Moiety. Journal of Organic Chemistry, 2016, 81, 5929-5941.	3.2	20
337	Protein–Glycan Quinary Interactions in Crowding Environment Unveiled by NMR Spectroscopy. Chemistry - A European Journal, 2017, 23, 13213-13220.	3.3	20
338	Efficient α-Glucosylation of Epigallocatechin Gallate Catalyzed by Cyclodextrin Glucanotransferase from <i>Thermoanaerobacter</i> Species. Journal of Agricultural and Food Chemistry, 2018, 66, 7402-7408.	5.2	20
339	Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nature Communications, 2019, 10, 2222.	12.8	20
340	Polyhydroxyazepanes Mimicking Monosaccharides: Synthesis of an α-D-Galacto-like Iminoheptitol. Heterocycles, 2004, 64, 65.	0.7	20
341	Chiral macrocyclic compounds from lactose derivatives. Carbohydrate Research, 1986, 150, 103-109.	2.3	19
342	Synthesis and conformational studies of carrabiose and its 4′-sulphate and 2,4′-disulphate. Carbohydrate Research, 1990, 208, 83-92.	2.3	19

#	Article	IF	CITATIONS
343	Determination by NMR spectroscopy of the structure and conformational features of the enterobacterial common antigen isolated from Escherichia coli. Carbohydrate Research, 1995, 273, 157-170.	2.3	19
344	Fungal cell-wall galactomannans isolated from Geotrichum spp. and their teleomorphs, Dipodascus and Galactomyces. Carbohydrate Research, 2002, 337, 2347-2351.	2.3	19
345	Molecular Recognition of Aminoglycoside Antibiotics by Bacterial Defence Proteins: NMR Study of the Structural and Conformational Features of Streptomycin Inactivation byBacillus subtilis Aminoglycoside-6-adenyl Transferase. Chemistry - A European Journal, 2005, 11, 5102-5113.	3.3	19
346	The conformational behaviour of α,β-trehalose-like disaccharides and their C-glycosyl, imino-C-glycosyl and carbagalactose analogues depends on the chemical nature of the modification: an NMR investigation. Tetrahedron: Asymmetry, 2005, 16, 519-527.	1.8	19
347	Structural elucidation of fungal polysaccharides isolated from the cell wall of Plectosphaerella cucumerina and Verticillium spp Carbohydrate Research, 2006, 341, 246-252.	2.3	19
348	C-Disaccharides as Probes for Carbohydrate Recognition – Investigation of the Conformational Requirements for Binding of Disaccharide Mimetics of Sialyl Lewis X. European Journal of Organic Chemistry, 2007, 2007, 645-654.	2.4	19
349	Fungal cell wall polysaccharides isolated from Discula destructiva spp Carbohydrate Research, 2007, 342, 1138-1143.	2.3	19
350	Engineering <i>O</i> â€Glycosylation Points in Nonâ€extended Peptides: Implications for the Molecular Recognition of Short Tumorâ€Associated Glycopeptides. Chemistry - A European Journal, 2011, 17, 3105-3110.	3.3	19
351	Conformational Selection in Glycomimetics: Human Galectinâ€l Only Recognizes <i>syn</i> â€ <i>Î[*]</i> â€Type Conformations of βâ€l,3â€Linked Lactose and Its <i>C</i> â€Glycosyl Derivative. Chemistry - A European Journal, 2013, 19, 14581-14590.	3.3	19
352	Targeting Matrix Metalloproteinases: Design of a Bifunctional Inhibitor for Presentation by Tumourâ€Associated Galectins. Chemistry - A European Journal, 2013, 19, 1896-1902.	3.3	19
353	Glycans in Medicinal Chemistry: An Underexploited Resource. ChemMedChem, 2015, 10, 1291-1295.	3.2	19
354	Optimization of Regioselective \hat{I}_{\pm} -Glucosylation of Hesperetin Catalyzed by Cyclodextrin Glucanotransferase. Molecules, 2018, 23, 2885.	3.8	19
355	The Conformation of the Mannopyranosyl Phosphate Repeating Unit of the Capsular Polysaccharide of <i>Neisseria meningitidis</i> Serogroup A and Its Carbaâ€Mimetic. European Journal of Organic Chemistry, 2018, 2018, 4548-4555.	2.4	19
356	Enzymatic Synthesis of a Novel Pterostilbene α-Glucoside by the Combination of Cyclodextrin Glucanotransferase and Amyloglucosidase. Molecules, 2018, 23, 1271.	3.8	19
357	Structure of a protective epitope reveals the importance of acetylation of <i>Neisseria meningitidis</i> serogroup A capsular polysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29795-29802.	7.1	19
358	The conformation of the monomethyl ethers of methyl β-lactoside in D2O and Me2SO-d6 solutions. Carbohydrate Research, 1993, 248, 15-36.	2.3	18
359	Solution conformation dynamics of a tetrasaccharide related to the Lewisx antigen deduced by 1H NMR NOESY, ROESY, and T-ROESY measurements. Carbohydrate Research, 1997, 300, 3-10.	2.3	18
360	NMR experiments for the detection of NOEs and scalar coupling constants between equivalent protons in trehalose-containing molecules. Carbohydrate Research, 1997, 301, 5-10.	2.3	18

#	Article	IF	CITATIONS
361	Synthesis and Solution Conformational Analysis of 2,3-Anhydro-3-C-[(1R)-2,6-anhydro-1-deoxy-1-fluoro-d-glycero-d-gulo- heptitol-1-C-yl]-β-d-gulo-furanose:Â First Example of a Monofluoromethylene-LinkedC-Disaccharide. Journal of Organic Chemistry, 2001, 66, 5132-5138.	3.2	18
362	Fungal cell wall galactomannan isolated from Apodus deciduus. Carbohydrate Research, 2002, 337, 1503-1506.	2.3	18
363	Synthesis and conformational analysis of an α-d-mannopyranosyl-(1→2)-α-d-mannopyranosyl-(1→6)-α-d-mannopyranose mimic. Carbohydrate Research, 20 342, 1859-1868.	027.,3	18
364	Conformational behaviour of glycomimetics: NMR and molecular modelling studies of the C-glycoside analogue of the disaccharide methyl β-d-galactopyranosyl-(1→3)-β-d-glucopyranoside. Carbohydrate Research, 2007, 342, 1910-1917.	2.3	18
365	NMR-Based Analysis of Aminoglycoside Recognition by the Resistance Enzyme ANT(4′): The Pattern of OH/NH3+Substitution Determines the Preferred Antibiotic Binding Mode and Is Critical for Drug Inactivation. Journal of the American Chemical Society, 2008, 130, 5086-5103.	13.7	18
366	Regioselective synthesis of neo-erlose by the \hat{I}^2 -fructofuranosidase from Xanthophyllomyces dendrorhous. Process Biochemistry, 2014, 49, 423-429.	3.7	18
367	New Inhibitors of Angiogenesis with Antitumor Activity in Vivo. Journal of Medicinal Chemistry, 2015, 58, 3757-3766.	6.4	18
368	Computational and Experimental NMR Definition of Differences in the Conformational Behavior of Free and Lectin-Bound Glycomimetic Aza/Carba-Lactosides. European Journal of Organic Chemistry, 2004, 2004, 1604-1613.	2.4	17
369	The NMR Structure of Human Obestatin in Membrane-Like Environments: Insights into the Structure-Bioactivity Relationship of Obestatin. PLoS ONE, 2012, 7, e45434.	2.5	17
370	Novel silica/bis(3-aminopropyl) polyethylene glycol inorganic/organic hybrids byÂsol–gel chemistry. Materials Chemistry and Physics, 2013, 140, 168-175.	4.0	17
371	Monitoring Glycan–Protein Interactions by NMR Spectroscopic Analysis: A Simple Chemical Tag That Mimics Natural CHâ€"ï€ Interactions. Chemistry - A European Journal, 2015, 21, 11408-11416.	3.3	17
372	Algal lectin binding to core (α1–6) fucosylated N-glycans: Structural basis for specificity and production of recombinant protein. Glycobiology, 2015, 25, 607-616.	2.5	17
373	Contribution of Shape and Charge to the Inhibition of a Family GH99 <i>endo</i> -α-1,2-Mannanase. Journal of the American Chemical Society, 2017, 139, 1089-1097.	13.7	17
374	Direct Enzymatic Branchâ€End Extension of Glycoclusterâ€Presented Glycans: An Effective Strategy for Programming Glycan Bioactivity. Chemistry - A European Journal, 2017, 23, 1623-1633.	3.3	17
375	The conformation of eight-membered 3,2′-O-isopropylidene acetals of some common disaccharides. Journal of the Chemical Society Perkin Transactions II, 1989, , 1867-1873.	0.9	16
376	N.m.r. studies of the conformation of analogues of methyl β-lactoside in methyl sulfoxide-d6. Carbohydrate Research, 1991, 221, 37-47.	2.3	16
377	Evaluation of rat intestinal lactase in vivo with 4-galactosylxylose. Clinica Chimica Acta, 1992, 210, 221-226.	1.1	16
378	1H-NMR spectroscopy as a tool for establishing the C-12 stereochemistry and the conformation of the side chain in 12-hydroxylated Neo-clerodanes isolated from teucrium species Tetrahedron, 1993, 49, 6921-6930.	1.9	16

#	Article	IF	CITATIONS
379	Phenylphenalenone Type Compounds from the Leaf Fibers of Abaca (Musa textilis). Journal of Agricultural and Food Chemistry, 2006, 54, 8744-8748.	5.2	16
380	Insights into the Dynamics and Molecular Recognition Features of Glycopeptides by Protein Receptors: The 3D Solution Structure of Hevein Bound to the Trisaccharide Core of <i>N</i> â€Glycoproteins. Chemistry - A European Journal, 2010, 16, 10715-10726.	3.3	16
381	Conformational Plasticity in Glycomimetics: Fluorocarbamethylâ€ <scp>L</scp> â€idopyranosides Mimic the Intrinsic Dynamic Behaviour of Natural Idose Rings. Chemistry - A European Journal, 2015, 21, 10513-10521.	3.3	16
382	Modulation of the Interaction between a Peptide Ligand and a G Protein-Coupled Receptor by Halogen Atoms. ACS Medicinal Chemistry Letters, 2015, 6, 872-876.	2.8	16
383	Structural Analysis of a GalNAcâ€T2 Mutant Reveals an Inducedâ€Fit Catalytic Mechanism for GalNAcâ€Ts. Chemistry - A European Journal, 2018, 24, 8382-8392.	3.3	16
384	Insights into real-time chemical processes in a calcium sensor protein-directed dynamic library. Nature Communications, 2019, 10, 2798.	12.8	16
385	Exploiting structure–activity relationships of QS-21 in the design and synthesis of streamlined saponin vaccine adjuvants. Chemical Communications, 2020, 56, 719-722.	4.1	16
386	Chemical structure and conformational features of cell-wall polysaccharides isolated from Aphanoascus mephitalus and related species. Carbohydrate Research, 1993, 250, 289-299.	2.3	15
387	Applications of nuclear magnetic resonance spectroscopy and molecular modeling to the study of protein-carbohydrate interactions. Journal of Molecular Graphics and Modelling, 1997, 15, 9-17.	2.4	15
388	Solvent-dependent conformational behaviour of lipochitoligosaccharides related to Nod factors. Carbohydrate Research, 1999, 318, 10-19.	2.3	15
389	Carrier protein-modulated presentation and recognition of an N-glycan: observations on the interactions of Man8 glycoform of ribonuclease B with conglutinin. Glycobiology, 2001, 11, 31-36.	2.5	15
390	Structural Determination of the O-Specific Chain of the Lipopolysaccharide fromPseudomonas cichorii. European Journal of Organic Chemistry, 2002, 2002, 1770-1775.	2.4	15
391	Synthesis and Conformational Analysis of Galactose-Derived Bicyclic Scaffolds. European Journal of Organic Chemistry, 2006, 2006, 2925-2933.	2.4	15
392	AM3 Modulates Dendritic Cell Pathogen Recognition Capabilities by Targeting DC-SIGN. Antimicrobial Agents and Chemotherapy, 2007, 51, 2313-2323.	3.2	15
393	NMR studies on the conformation of oligomannosides and their interaction with banana lectin. Glycoconjugate Journal, 2007, 24, 449-464.	2.7	15
394	Versatile strategy for the synthesis of biotin-labelled glycans, their immobilization to establish a bioactive surface and interaction studies with a lectin on a biochip. Glycoconjugate Journal, 2008, 25, 633-646.	2.7	15
395	Sugar–Oligoamides: Boundâ€State Conformation and DNA Minorâ€Grooveâ€Binding Description by TRâ€NOI and Differentialâ€Frequency Saturationâ€Transferâ€Difference Experiments. Chemistry - A European Journal, 2008, 14, 2435-2442.	ESY 3.3	15
396	A lectin from the Chinese bird-hunting spider binds sialic acids. Carbohydrate Research, 2009, 344, 1515-1525.	2.3	15

#	Article	IF	CITATIONS
397	Binding of β- <scp>d</scp> -Glucosides and β- <scp>d</scp> -Mannosides by Rice and Barley β- <scp>d</scp> -Glycosidases with Distinct Substrate Specificities. Biochemistry, 2010, 49, 8779-8793.	2.5	15
398	Molecular Recognition of βâ€ <i>O</i> â€ClcNAc Glycopeptides by a Lectinâ€Like Receptor: Binding Modulation by the Underlying Ser or Thr Amino Acids. ChemBioChem, 2011, 12, 110-117.	2.6	15
399	1H, 13C, and 15N backbone and side-chain chemical shift assignments for the 31ÂkDa human galectin-7 (p53-induced gene 1) homodimer, a pro-apoptotic lectin. Biomolecular NMR Assignments, 2012, 6, 127-129.	0.8	15
400	Anti-endotoxic activity and structural basis for human MD-2·TLR4 antagonism of tetraacylated lipid A mimetics based on βGlcN(1↔1)αGlcN scaffold. Innate Immunity, 2015, 21, 490-503.	2.4	15
401	Mite allergoids coupled to nonoxidized mannan from Saccharomyces cerevisae efficiently target canine dendritic cells for novel allergy immunotherapy in veterinary medicine. Veterinary Immunology and Immunopathology, 2017, 190, 65-72.	1.2	15
402	Regioselective Glycosylation Strategies for the Synthesis of Group Ia and Ib Streptococcus Related Glycans Enable Elucidating Unique Conformations of the Capsular Polysaccharides. Chemistry - A European Journal, 2019, 25, 16277-16287.	3.3	15
403	Efficient production of isomelezitose by a glucosyltransferase activity in <i>Metschnikowia reukaufii</i> cell extracts. Microbial Biotechnology, 2019, 12, 1274-1285.	4.2	15
404	The N-glycan structures of the antigenic variants of chlorovirus PBCV-1 major capsid protein help to identify the virus-encoded glycosyltransferases. Journal of Biological Chemistry, 2019, 294, 5688-5699.	3.4	15
405	Targeting transthyretin in Alzheimer's disease: Drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer's disease. European Journal of Medicinal Chemistry, 2021, 226, 113847.	5.5	15
406	The Conformation of the Tri- and Tetrasaccharide Produced in the Hydrolysis of Barley Glucan with the Enzyme Endo-1,3-1,4-β-glucan 4-Glucanohydrolase from Bacillus Licheniformis. Journal of Carbohydrate Chemistry, 1994, 13, 799-817.	1.1	14
407	The Conformational Behaviour of Fucosyl and Carbafucosyl Mimetics in the Free and in the Protein-Bound States. European Journal of Organic Chemistry, 2001, 2001, 681-689.	2.4	14
408	Chemical structure of a polysaccharide isolated from the cell wall of Arachniotus verruculosus and A. ruber. Carbohydrate Research, 2001, 336, 325-328.	2.3	14
409	A Combined NMR, Computational, and HPLC Study of the Inclusion of Aromatic and Fluoroaromatic Compounds in Cyclodextrins as a Model for Studying Carbohydrate–Aromatic Interactions. European Journal of Organic Chemistry, 2008, 2008, 5891-5898.	2.4	14
410	Interaction between ghrelin and the ghrelin receptor (GHS-R1a), a NMR study using living cells. Bioorganic and Medicinal Chemistry, 2010, 18, 1583-1590.	3.0	14
411	Direct Experimental Evidence for the High Chemical Reactivity of α―and βâ€Xylopyranosides Adopting a ^{2,5} <i>B</i> Conformation in Glycosyl Transfer. Chemistry - A European Journal, 2011, 17, 7345-7356.	3.3	14
412	Synthesis, Conformational Analysis, and Evaluation as Glycosidase Inhibitors of Two Ether-Bridged Iminosugars. Journal of Carbohydrate Chemistry, 2011, 30, 641-654.	1.1	14
413	Structure–Activity Relationship Study of Opiorphin, a Human Dual Ectopeptidase Inhibitor with Antinociceptive Properties. Journal of Medicinal Chemistry, 2012, 55, 1181-1188.	6.4	14
414	Fructosylation of Hydroxytyrosol by the βâ€Fructofuranosidase from Xanthophyllomyces dendrorhous : Insights into the Molecular Basis of the Enzyme Specificity. ChemCatChem, 2018, 10, 4878-4887.	3.7	14

#	Article	IF	CITATIONS
415	Selective ¹³ C‣abels on Repeating Glycan Oligomers to Reveal Protein Binding Epitopes through NMR: Polylactosamine Binding to Galectins. Angewandte Chemie - International Edition, 2021, 60, 18777-18782.	13.8	14
416	Involvement of the glucose moiety in the molecular recognition of methyl β-lactoside by ricin: synthesis, conformational analysis, and binding studies of different derivatives at the C-3 region Carbohydrate Research, 1994, 256, 223-244.	2.3	13
417	A highly convergent synthesis of a branched C-trisaccharide employing a double Sml2-promoted C-glycosylation. Chemical Communications, 2000, , 2319-2320.	4.1	13
418	The relative orientation of the lipid and carbohydrate moieties of lipochitooligosaccharides related to nodulation factors depends on lipid chain saturation. Organic and Biomolecular Chemistry, 2005, 3, 1381-1386.	2.8	13
419	NMR Structural Studies of Oligosaccharides Related to Cancer Processes. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 52-63.	1.7	13
420	Synthesis, Conformation, and Biological Characterization of a Sugar Derivative of Morphine that is a Potent, Long-Lasting, and Nontolerant Antinociceptive. Journal of Medicinal Chemistry, 2009, 52, 2656-2666.	6.4	13
421	Dynamics and Hydration Properties of Small Antifreezeâ€Like Glycopeptides Containing Nonâ€Natural Amino Acids. European Journal of Organic Chemistry, 2010, 2010, 3525-3532.	2.4	13
422	Synthesis, biological evaluation and structural characterization of novel glycopeptide analogues of nociceptin N/OFQ. Organic and Biomolecular Chemistry, 2011, 9, 6133.	2.8	13
423	New Cathepsin Inhibitors to Explore the Fluorophilic Properties of the S ² Pocket of Cathepsin B: Design, Synthesis, and Biological Evaluation. Chemistry - A European Journal, 2011, 17, 5256-5260.	3.3	13
424	Structural Modifications of Residual Lignins from Sisal and Flax Pulps during Soda-AQ Pulping and TCF/ECF Bleaching. Industrial & Engineering Chemistry Research, 2013, 52, 4695-4703.	3.7	13
425	Synthesis and conformational analysis of phosphorylated β-(1→2) linked mannosides. Carbohydrate Research, 2014, 383, 58-68.	2.3	13
426	Development of a Nucleotide Exchange Inhibitor That Impairs Ras Oncogenic Signaling. Chemistry - A European Journal, 2017, 23, 1676-1685.	3.3	13
427	Glycans in Infectious Diseases. A Molecular Recognition Perspective. Current Medicinal Chemistry, 2017, 24, 4057-4080.	2.4	13
428	Interactions between a Heparin Trisaccharide Library and FGF-1 Analyzed by NMR Methods. International Journal of Molecular Sciences, 2017, 18, 1293.	4.1	13
429	Molecular Recognition of a Thomsen–Friedenreich Antigen Mimetic Targeting Human Galectinâ€3. ChemMedChem, 2018, 13, 2030-2036.	3.2	13
430	Radiochemical examination of transthyretin (TTR) brain penetration assisted by iododiflunisal, a TTR tetramer stabilizer and a new candidate drug for AD. Scientific Reports, 2019, 9, 13672.	3.3	13
431	Structureâ€Guided Design of a Groupâ€B Streptococcus Typeâ€III Synthetic Glycan–Conjugate Vaccine. Chemistry - A European Journal, 2020, 26, 7018-7025.	3.3	13
432	NMR of glycoproteins: profiling, structure, conformation and interactions. Current Opinion in Structural Biology, 2021, 68, 9-17.	5.7	13

JESUS JIMENEZ-BARBERO

#	Article	IF	CITATIONS
433	Conformation of 1,2-O-alkylidenehexopyranoses: tri-O-acetyl derivatives of d-allose and d-gulose. Carbohydrate Research, 1986, 145, 319-327.	2.3	12
434	Exploration of the conformational flexibility of the LeXrelated oligosaccharide Chemical Communications, 1996, , 421-422.	4.1	12
435	Selective enzymatic synthesis of 6′-galactosyl lactose by Pectinex Ultra SP in water. Biotechnology Letters, 2001, 23, 1921-1924.	2.2	12
436	The Impact of R53C Mutation on the Three-Dimensional Structure, Stability, and DNA-Binding Properties of the Human Hesx-1 Homeodomain. ChemBioChem, 2002, 3, 726.	2.6	12
437	Flexible docking of pyridinone derivatives into the non-nucleoside inhibitor binding site of HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry, 2004, 12, 6085-6095.	3.0	12
438	Determination of the Bound Conformation of a Competitive Nanomolar Inhibitor ofMycobacterium tuberculosis Typeâ€II Dehydroquinase by NMR Spectroscopy. ChemMedChem, 2006, 1, 990-996.	3.2	12
439	Isolation and structural determination of a unique polysaccharide containing mannofuranose from the cell wall of the fungus Acrospermum compressum. Glycoconjugate Journal, 2007, 24, 421-428.	2.7	12
440	Hemicarbasucrose: Turning off the Exoanomeric Effect Induces Less Flexibility. Chemistry - an Asian Journal, 2008, 3, 51-58.	3.3	12
441	Mechanism of Sulfur Transfer Across Protein–Protein Interfaces: The Cysteine Desulfurase Model System. ACS Catalysis, 2016, 6, 3975-3984.	11.2	12
442	Minimizing the Entropy Penalty for Ligand Binding: Lessons from the Molecular Recognition of the Histo Bloodâ€Group Antigens by Human Galectinâ€3. Angewandte Chemie, 2019, 131, 7346-7350.	2.0	12
443	The Interaction of Fluorinated Glycomimetics with DC-SIGN: Multiple Binding Modes Disentangled by the Combination of NMR Methods and MD Simulations. Pharmaceuticals, 2020, 13, 179.	3.8	12
444	Trimethylamine <i>N</i> -oxide is a new plant molecule that promotes abiotic stress tolerance. Science Advances, 2021, 7, .	10.3	12
445	Atomic and Specificity Details of Mucin 1 <i>O</i> -Glycosylation Process by Multiple Polypeptide GalNAc-Transferase Isoforms Unveiled by NMR and Molecular Modeling. Jacs Au, 2022, 2, 631-645.	7.9	12
446	Chiral crown ethers incorporating .alpha.,.alphatrehalose. Unexpected structure of a trehalose containing 18-crown-6. Journal of Organic Chemistry, 1991, 56, 3614-3618.	3.2	11
447	Chromium Carbenes as Substrates in Cyclopropanation Reactions: 1,4- vs 1,2-Addition in the Reaction of Sulfur Ylides and .alpha.,.betaUnsaturated Alkoxychromium(0) Carbenes. Organometallics, 1994, 13, 2934-2936.	2.3	11
448	Synthesis and conformational analysis of a lipotetrasaccharide related to the nodulation factor of Rhizobium bacteria. Tetrahedron: Asymmetry, 1997, 8, 1207-1224.	1.8	11
449	G2 and DFT Rigorous Description of the Inversion Process of Oxane and Thiane used as Simple Ring Systems to Model Sugar Components. ChemPhysChem, 2003, 4, 754-757.	2.1	11
450	A dynamic perspective on the molecular recognition of chitooligosaccharide ligands by hevein domains. Carbohydrate Research, 2005, 340, 1039-1049.	2.3	11

#	Article	IF	CITATIONS
451	Differential Recognition of Mannoseâ€Based Polysaccharides by Tripodal Receptors Based on a Triethylbenzene Scaffold Substituted with Trihydroxybenzoyl Moieties. European Journal of Organic Chemistry, 2013, 2013, 65-76.	2.4	11
452	From 1,4-Disaccharide to 1,3-Glycosyl Carbasugar: Synthesis of a Bespoke Inhibitor of Family GH99 Endo-α-mannosidase. Organic Letters, 2018, 20, 7488-7492.	4.6	11
453	Structural and Computational Analysis of 2â€Halogenoâ€Glycosyl Cations in the Presence of a Superacid: An Expansive Platform. Angewandte Chemie, 2019, 131, 13896-13900.	2.0	11
454	Novel Dextran‣upported Biological Probes Decorated with Disaccharide Entities for Investigating the Carbohydrate–Protein Interactions of Galâ€3. ChemBioChem, 2019, 20, 203-209.	2.6	11
455	Singleâ€Step Glycosylations with ¹³ Câ€Labelled Sulfoxide Donors: A Lowâ€Temperature NMR Cartography of the Distinguishing Mechanistic Intermediates. Chemistry - A European Journal, 2021, 27, 2030-2042.	3.3	11
456	The 1H-NMR assignments of the aromatic resonances in complexes of Lactobacillus casei dihydrofolate reductase and the origins of their chemical shifts. FEBS Journal, 1990, 191, 659-668.	0.2	10
457	Conformational studies on \hat{l}^2 -galactopyranosyl-(1->3) and (1->4)-xylopyranosides by NMR, molecular mechanics, molecular dynamics, and semiempirical. Tetrahedron, 1994, 50, 6417-6432.	1.9	10
458	Solution conformation and dynamics of an extracellular polysaccharide isolated from Bradyrhyzobium as deduced from 1H-NMR off resonance ROESY and 13C-NMR relaxation measurements. Carbohydrate Research, 1997, 304, 219-228.	2.3	10
459	Solution conformation and dynamics of a fungal cell wall polysaccharide isolated from Microsporum gypseum. Glycoconjugate Journal, 1998, 15, 309-321.	2.7	10
460	Structure of fungal polysaccharides isolated from the cell-wall of three strains of Verticillium fungicola. Carbohydrate Polymers, 2002, 50, 209-212.	10.2	10
461	RCM as a tool to freeze conformation of monosaccharides: synthesis of a β-mannopyranoside mimic adopting a conformation close to the biologically relevant B2,5 boat. Tetrahedron Letters, 2006, 47, 8887-8891.	1.4	10
462	Carbohydrate Recognition at the Minorâ€Groove of the Selfâ€Complementary Duplex d(CGCGAATTCGCG) 2 by a Synthetic Glycoâ€oligoamide. Chemistry - A European Journal, 2011, 17, 4561-4570.	3.3	10
463	NMR and molecular modeling reveal key structural features of synthetic nodulation factors. Glycobiology, 2011, 21, 824-833.	2.5	10
464	α-N-Linked glycopeptides: conformational analysis and bioactivity as lectin ligands. Organic and Biomolecular Chemistry, 2012, 10, 5916.	2.8	10
465	Conformational analysis of seven-membered 1-N-iminosugars by NMR and molecular modelling. New Journal of Chemistry, 2012, 36, 1008.	2.8	10
466	The Crystal Structure and Small-Angle X-Ray Analysis of CsdL/TcdA Reveal a New tRNA Binding Motif in the MoeB/E1 Superfamily. PLoS ONE, 2015, 10, e0118606.	2.5	10
467	Avenues to Characterize the Interactions of Extended Nâ€Glycans with Proteins by NMR Spectroscopy: The Influenza Hemagglutinin Case. Angewandte Chemie, 2018, 130, 15271-15275.	2.0	10
468	2â€Acetamidoâ€2â€deoxyâ€ <scp>l</scp> â€iminosugar <i>C</i> â€Alkyl and <i>C</i> â€Aryl Glycosides: Synthesi Glycosidase Inhibition. European Journal of Organic Chemistry, 2018, 2018, 5477-5488.	s and 2.4	10

#	Article	IF	CITATIONS
469	Synthesis, Conformational Analysis, and Complexation Study of an Iminosugar-Aza-Crown, a Sweet Chiral Cyclam Analog. Organic Letters, 2020, 22, 2344-2349.	4.6	10
470	Enzymatic Synthesis of Phloretin αâ€Glucosides Using a Sucrose Phosphorylase Mutant and its Effect on Solubility, Antioxidant Properties and Skin Absorption. Advanced Synthesis and Catalysis, 2021, 363, 3079-3089.	4.3	10
471	Sulfation Code and Conformational Plasticity of l-Iduronic Acid Homo-Oligosaccharides Mimic the Biological Functions of Heparan Sulfate. ACS Chemical Biology, 2021, 16, 2481-2489.	3.4	10
472	Stereoelectronic effects in the conformational behavior and ring formation of some N,N′-dimethyl- and N,N′-diacetyl- 1,5-dioxa-4,8-diazadecalins Tetrahedron, 1992, 48, 2715-2728.	1.9	9
473	Conformational insights on the molecular recognition processes of carbohydrate molecules by proteins and enzymes: A 3D view by using NMR. Biocatalysis and Biotransformation, 2006, 24, 13-22.	2.0	9
474	Current analytical methods to study plant water extracts: the example of two mushrooms species,Inonotus hispidus andSparassis crispa. Phytochemical Analysis, 2007, 18, 33-41.	2.4	9
475	Synthesis of a bicyclic analog of l-iduronic acid adopting the biologically relevant 2 S 0 conformation. Carbohydrate Research, 2007, 342, 1876-1887.	2.3	9
476	Structural elucidation of a cell wall fungal polysaccharide isolated from Ustilaginoidea virens, a pathogenic fungus of Oriza sativa and Zea mays. Carbohydrate Research, 2008, 343, 2980-2984.	2.3	9
477	Glycan Tagging to Produce Bioactive Ligands for a Surface Plasmon Resonance (SPR) Study via Immobilization on Different Surfaces. Bioconjugate Chemistry, 2009, 20, 673-682.	3.6	9
478	Olefin Metathesisâ^'Iodoetherificationâ^'Dehydroiodination Strategy for Spiroketal Subunits of Polyether Antibiotics. Journal of Organic Chemistry, 2009, 74, 7774-7780.	3.2	9
479	Structural studies on the interaction of saccharides and glycomimetics with galectin-1: A 3D perspective using a combined molecular modeling and NMR approach. Pure and Applied Chemistry, 2011, 84, 49-64.	1.9	9
480	A Murine Monoclonal Antibody to Glycogen: Characterization of Epitopeâ€Fine Specificity by Saturation Transfer Difference (STD) NMR Spectroscopy and Its Use in Mycobacterial Capsular αâ€Glucan Research. ChemBioChem, 2015, 16, 977-989.	2.6	9
481	Structural Insights into the Binding of Sugar Receptors (Lectins) to a Synthetic Tricyclic Tn Mimetic and Its Clycopeptide Version. European Journal of Organic Chemistry, 2015, 2015, 6823-6831.	2.4	9
482	<scp>D</scp> ―and <scp>L</scp> â€Mannoseâ€Containing <i>glyco</i> â€ÂOligoamides Show Distinct Recognition Properties When Interacting with DNA. European Journal of Organic Chemistry, 2015, 2015, 6180-6193.	2.4	9
483	Beyond a Fluorescent Probe: Inhibition of Cell Division Protein FtsZ by <i>mant</i> -GTP Elucidated by NMR and Biochemical Approaches. ACS Chemical Biology, 2015, 10, 2382-2392.	3.4	9
484	Diastereomeric Glycosyl Sulfoxides Display Different Recognition Features versus <i>E. coli</i> βâ€Galactosidase. European Journal of Organic Chemistry, 2016, 2016, 5117-5122.	2.4	9
485	Conformational Behavior of <scp>d</scp> -Lyxose in Gas and Solution Phases by Rotational and NMR Spectroscopies. Journal of Physical Chemistry Letters, 2019, 10, 3339-3345.	4.6	9
486	Structural Characterization of Nâ€Linked Glycans in the Receptor Binding Domain of the SARSâ€CoVâ€2 Spike Protein and their Interactions with Human Lectins. Angewandte Chemie, 2020, 132, 23971-23979.	2.0	9

#	Article	IF	CITATIONS
487	Second-generation mimics of ganglioside GM1 oligosaccharide: a three-dimensional view of their interactions with bacterial enterotoxins by NMR and computational methods. Chemistry - A European Journal, 2002, 8, 4598-612.	3.3	9
488	Conformation of 1,6-anhydro-3,4-O-isopropylidene-Î ² -d-galactopyranose and its 2-O-acetyl derivative. Carbohydrate Research, 1984, 127, 338-344.	2.3	8
489	The conformation of some 1,2-O-alkylidene-î²-l-lyxo- and -î²-l-arabino-pyranoses in the solid state and in solution. Carbohydrate Research, 1988, 175, 119-131.	2.3	8
490	Improved preparation of acetals of myo-inositol and its (±)-1-benzyl ether: conformational analysis of di-O-isopropylidene-myo-inositol derivatives. Carbohydrate Research, 1990, 207, 249-257.	2.3	8
491	The conformation of 1,6-anhydrolactose and its hexa-acetate in solution. Carbohydrate Research, 1991, 215, 239-250.	2.3	8
492	Unterschiede zwischen den Konformationen von O―und Câ€Glycosiden im proteingebundenen Zustand: Ricin B, ein Galactoseâ€bindendes Protein, erkennt unterschiedliche Konformationen von Câ€Lactose und dessen Oâ€Analogon. Angewandte Chemie, 1996, 108, 323-326.	2.0	8
493	Electrophoretic behavior and size distribution of the acidic polysaccharides produced by the bacteriaBradyrhizobium (Chamaecytisus) strain BGA-1 andBradyrhizobium japonicum USDA 110. Electrophoresis, 1998, 19, 2621-2624.	2.4	8
494	Solution conformation and dynamics of the trisaccharide fragments of the O-antigen of Vibrio cholerae O1, serotypes Inaba and Ogawa. Carbohydrate Research, 1999, 321, 88-95.	2.3	8
495	Structure of a cell wall polysaccharide isolated from Hypocreagelatinosa. Carbohydrate Research, 2001, 333, 173-178.	2.3	8
496	Control of disaccharide conformation by π-stacking. Canadian Journal of Chemistry, 2003, 81, 364-375.	1.1	8
497	Structure of the Functional Domain of φ29 Replication Organizer. Journal of Biological Chemistry, 2005, 280, 20730-20739.	3.4	8
498	Synthesis and NMR experiments of (4,5,6-13C)-deoxymannojirimycin. A new entry to 13C-labeled glycosidase inhibitors. Carbohydrate Research, 2007, 342, 1805-1812.	2.3	8
499	Diffusion nuclear magnetic resonance spectroscopy detects substoichiometric concentrations of small molecules in protein samples. Analytical Biochemistry, 2010, 396, 117-123.	2.4	8
500	Fructoseâ€Based Proline Analogues: Exploring the Prolyl <i>trans</i> /i>/ <i>cis</i> â€Amide Rotamer Population in Model Peptides. European Journal of Organic Chemistry, 2011, 2011, 128-136.	2.4	8
501	Chemical Interrogation of Drug/RNA Complexes: From Chemical Reactivity to Drug Design. Angewandte Chemie - International Edition, 2013, 52, 3148-3151.	13.8	8
502	Unraveling the Interaction between the LPS Oâ€Antigen of <i>Burkholderia anthina</i> and the 5D8 Monoclonal Antibody by Using a Multidisciplinary Chemical Approach, with Synthesis, NMR, and Molecular Modeling Methods. ChemBioChem, 2013, 14, 1485-1493.	2.6	8
503	Cooperative Hydrogen Bonding in Glyco–Oligoamides: DNA Minor Groove Binders in Aqueous Media. Chemistry - A European Journal, 2014, 20, 17640-17652.	3.3	8
504	Thiodisaccharide Sulfoxides: Absolute Configuration of the SO Sulfur Atom and Influence on the Biological Activity towards the βâ€Galactosidase from <i>E. coli</i> . European Journal of Organic Chemistry, 2015, 2015, 1448-1455.	2.4	8

#	Article	IF	CITATIONS
505	Breaking the Limits in Analyzing Carbohydrate Recognition by NMR Spectroscopy: Resolving Branchâ€Selective Interaction of a Tetraâ€Antennary <i>N</i> â€Glycan with Lectins. Angewandte Chemie, 2017, 129, 15183-15187.	2.0	8
506	Discovering Biomolecules with <i>Huisgenase</i> Activity: Designed Repeat Proteins as Biocatalysts for (3 + 2) Cycloadditions. Journal of the American Chemical Society, 2020, 142, 762-776.	13.7	8
507	Mono―and Diâ€Fucosylated Glycans of the Parasitic Worm <i>S. mansoni</i> are Recognized Differently by the Innate Immune Receptor DCâ€SIGN. Chemistry - A European Journal, 2020, 26, 15605-15612.	3.3	8
508	Chemoenzymatic synthesis of 3-deoxy-3-fluoro- <scp>l</scp> -fucose and its enzymatic incorporation into glycoconjugates. Chemical Communications, 2020, 56, 6408-6411.	4.1	8
509	Targeting the CRD Fâ€face of Human Galectinâ€3 and Allosterically Modulating Glycan Binding by Angiostatic PTX008 and a Structurally Optimized Derivative. ChemMedChem, 2021, 16, 713-723.	3.2	8
510	The two domains of human galectin-8 bind sialyl- and fucose-containing oligosaccharides in an independent manner. A 3D view by using NMR. RSC Chemical Biology, 2021, 2, 932-941.	4.1	8
511	Structure and N-acetylglucosamine binding of the distal domain of mouse adenovirus 2 fibre. Journal of General Virology, 2018, 99, 1494-1508.	2.9	8
512	NMR of Sulfated Oligo- and Polysaccharides. , 0, , 189-229.		7
513	Protein-Carbohydrate Interactions: A Combined Theoretical and NMR Experimental Approach on Carbohydrate-Aromatic Interactions and on Pyranose Ring Distortion. ACS Symposium Series, 2006, , 60-80.	0.5	7
514	Antimicrobial Peptides and Their Superior Fluorinated Analogues: Structure–Activity Relationships as Revealed by NMR Spectroscopy and MD Calculations. ChemBioChem, 2010, 11, 2424-2432.	2.6	7
515	Mimicking Chitin: Chemical Synthesis, Conformational Analysis, and Molecular Recognition of the β(1→3) <i>N</i> â€Acetylchitopentaose Analogue. Chemistry - A European Journal, 2010, 16, 4239-4249.	3.3	7
516	Cross-Linking Effects Dictate the Preference of Galectins to Bind LacNAc-Decorated HPMA Copolymers. International Journal of Molecular Sciences, 2021, 22, 6000.	4.1	7
517	Solution Conformation of Carbohydrates: A View by Using NMR Assisted by Modeling. Methods in Molecular Biology, 2015, 1273, 261-287.	0.9	7
518	The Flexibility of Oligosaccharides Unveiled Through Residual Dipolar Coupling Analysis. Frontiers in Molecular Biosciences, 2021, 8, 784318.	3.5	7
519	The solid-state and solution conformation of some 1,2-O-alkylidene xylopyranoses. Application of heteronuclear long-range coupling constants to the conformational analysis of dioxolane rings. Journal of the Chemical Society Perkin Transactions II, 1987, , 791-796.	0.9	6
520	Application op vicinal carbon-proton coupling constants and molecular mechanics calculations in the conformational analysis of dioxolane rings. Tetrahedron, 1988, 44, 1441-1447.	1.9	6
521	Synthesis and characterization of a paramagnetic sialic acid conjugate as probe for magnetic resonance applications. Carbohydrate Research, 2012, 354, 21-31.	2.3	6
522	Exploring NMR methods as a tool to select suitable fluorescent nucleotide analogues. Organic and Biomolecular Chemistry, 2013, 11, 5332.	2.8	6

JESUS JIMENEZ-BARBERO

#	Article	IF	CITATIONS
523	Synthesis, Biological Profiling and Determination of the Tubulin-Bound Conformation of 12-Aza-Epothilones (Azathilones). Molecules, 2016, 21, 1010.	3.8	6
524	Acetylated Trivalent Mannobioses: Chemical Modification, Structural Elucidation, and Biological Evaluation. ChemMedChem, 2016, 11, 562-574.	3.2	6
525	Hidden α-helical propensity segments within disordered regions of the transcriptional activator CHOP. PLoS ONE, 2017, 12, e0189171.	2.5	6
526	Coâ€administration of Antimicrobial Peptides Enhances Tollâ€like Receptorâ€4 Antagonist Activity of a Synthetic Glycolipid. ChemMedChem, 2018, 13, 280-287.	3.2	6
527	Zwitterionic Polysaccharides of Shigella sonnei: Synthetic Study toward a Ready-for-Oligomerization Building Block Made of Two Rare Amino Sugars. Synthesis, 2018, 50, 4270-4282.	2.3	6
528	Environmental Effects Determine the Structure of Potential βâ€Amino Acid Based Foldamers. Chemistry - A European Journal, 2018, 24, 10625-10629.	3.3	6
529	Peptidoglycan Recognition by Wheat Germ Agglutinin. A View by NMR. Natural Product Communications, 2019, 14, 1934578X1984924.	0.5	6
530	Oral Treatment with Iododiflunisal Delays Hippocampal Amyloid-β Formation in a Transgenic Mouse Model of Alzheimer's Disease: A Longitudinal in vivo Molecular Imaging Study1. Journal of Alzheimer's Disease, 2020, 77, 99-112.	2.6	6
531	Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Frontiers in Chemistry, 2021, 9, 664097.	3.6	6
532	Polyglucosylation of Rutin Catalyzed by Cyclodextrin Glucanotransferase from <i>Geobacillus</i> sp.: Optimization and Chemical Characterization of Products. Industrial & Engineering Chemistry Research, 2021, 60, 18651-18659.	3.7	6
533	The solid state and solution conformation of 1,2alkylidene-αribopyranoses. Chirality assessment of pentoses from crystallograph. Tetrahedron, 1986, 42, 2539-2549.	1.9	5
534	Different reactivities of acetylated exo- and endo-cyanoethylidene derivatives in glycosylation reactions. Carbohydrate Research, 1989, 194, 163-169.	2.3	5
535	The exo-anomeric effect does not govern the conformation of some 2,2′-O-substituted α,α′-trehalose derivatives. Solid state and solution evidences Tetrahedron, 1993, 49, 2109-2114.	1.9	5
536	The Conformation of Some Halodeoxy Analogues of Methyl β-Lactoside in D ₂ O and DMSO-d ₆ Solutions. Journal of Carbohydrate Chemistry, 1994, 13, 207-233.	1.1	5
537	Influence of arene-arene interactions on the conformation of acyclic molecules:1H NMR and dipole moment experimental results. Journal of Physical Organic Chemistry, 2004, 17, 71-82.	1.9	5
538	Cell wall polysaccharides isolated from the fungus Neotestudina rosatii, one of the etiologic agents of mycetoma in man. Glycoconjugate Journal, 2009, 26, 1047-1054.	2.7	5
539	The interaction of La3+ complexes of DOTA/DTPA glycoconjugates with the RCA120 lectin: a saturation transfer difference NMR spectroscopic study. Journal of Biological Inorganic Chemistry, 2011, 16, 725-734.	2.6	5
540	Structural Framework for the Modulation of the Activity of the Hybrid Antibiotic Peptide Cecropin Aâ€Melittin [CA(1–7)M(2–9)] by N ^ε ‣ysine Trimethylation. ChemBioChem, 2011, 12, 2177-2	183.	5

#	Article	IF	CITATIONS
541	Finding the Right Candidate for the Right Position: A Fast NMR-Assisted Combinatorial Method for Optimizing Nucleic Acids Binders. Journal of the American Chemical Society, 2016, 138, 6463-6474.	13.7	5
542	The Stabilization of Glycosyl Cations Through Cooperative Noncovalent Interactions: A Theoretical Perspective. ChemPhysChem, 2018, 19, 659-665.	2.1	5
543	Experimental and theoretical study of the role of CH/Ĩ€ interactions in the aminolysis reaction of acetyl galactoside. Carbohydrate Research, 2019, 486, 107821.	2.3	5
544	Bacterial polysaccharides: conformation, dynamics and molecular recognition by antibodies. Drug Discovery Today: Technologies, 2020, 35-36, 1-11.	4.0	5
545	Synthesis of long-chain alkyl glucosides via reverse hydrolysis reactions catalyzed by an engineered β-glucosidase. Enzyme and Microbial Technology, 2020, 140, 109591.	3.2	5
546	Chiral recognition of 1-O-allyl- and 1-O-benzyl-d- and -l-myo-inositol by cyclomalto-hexaose and -heptaose (l±- and l²-cyclodextrin). Carbohydrate Research, 1990, 208, 255-259.	2.3	4
547	Solution structure of the trisaccharide and hexasaccharide fragments of the O-antigen of the lipopolysaccharide of Rhizobium tropici CIAT899. Carbohydrate Research, 1995, 279, 339-352.	2.3	4
548	Conformational studies of a trisaccharide epitope in solution by using NMR spectroscopy and molecular mechanics and dynamics calculations with the MM3* program. Journal of the Chemical Society Perkin Transactions II, 1995, , 713-721.	0.9	4
549	Symmetry Breaking of NovelC2Chiral Across-Ring 1,3-Dienes. Journal of Organic Chemistry, 1998, 63, 6772-6773.	3.2	4
550	Preparative production and separation of 2-acetamido-2-deoxymannopyranoside-containing saccharides using borate-saturated polyolic exclusion gels. Journal of Chromatography A, 2006, 1127, 126-136.	3.7	4
551	Enhanced signal dispersion in saturation transfer difference experiments by conversion to a 1D-STD-homodecoupled spectrum. Journal of Biomolecular NMR, 2006, 36, 103-109.	2.8	4
552	The solution conformation of C-glycosyl analogues of the sialyl-Tn antigen. Carbohydrate Research, 2007, 342, 1974-1982.	2.3	4
553	Recent advances on the application of NMR methods to study the conformation and recognition properties of carbohydrates. Carbohydrate Chemistry, 2012, , 192-214.	0.3	4
554	Synthesis and conformational analysis of bicyclic mimics of α- and β-d-glucopyranosides adopting the biologically relevant 2,5B conformation. Carbohydrate Research, 2012, 361, 219-224.	2.3	4
555	Conformational flexibility around the Gal-β-(1Â→Â3)-Glc linkage: Experimental evidence for the existence of the anti-Ĩ^ conformation in aqueous solution. Carbohydrate Research, 2016, 433, 36-40.	2.3	4
556	An Assay for Screening Potential Drug Candidates for Alzheimer's Disease That Act as Chaperones of the Transthyretin and Amyloidâ€Î² Peptides Interaction. Chemistry - A European Journal, 2020, 26, 17462-17469.	3.3	4
557	Insight into the Ferrier Rearrangement by Combining Flash Chemistry and Superacids. Angewandte Chemie, 2021, 133, 2064-2069.	2.0	4
558	Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures. Biomolecules, 2021, 11, 595.	4.0	4

#	Article	IF	CITATIONS
559	Structural Insights into the Molecular Recognition Mechanism of the Cancer and Pathogenic Epitope, LacdiNAc by Immuneâ€Related Lectins. Chemistry - A European Journal, 2021, 27, 7951-7958.	3.3	4
560	Epitope Recognition of a Monoclonal Antibody Raised against a Synthetic Glycerol Phosphate Based Teichoic Acid. ACS Chemical Biology, 2021, 16, 1344-1349.	3.4	4
561	Iminosugar C â€Glycosides Work as Pharmacological Chaperones of NAGLU, a Glycosidase Involved in MPS IIIB Rare Disease**. Chemistry - A European Journal, 2021, 27, 11291-11297.	3.3	4
562	Aβ _{31–35} Decreases Neprilysin-Mediated Alzheimer's Amyloid-β Peptide Degradation. ACS Chemical Neuroscience, 2021, 12, 3708-3718.	3.5	4
563	Kinetic Studies of Acetyl Group Migration between the Saccharide Units in an Oligomannoside Trisaccharide Model Compound and a Native Galactoglucomannan Polysaccharide. ChemBioChem, 2021, 22, 2986-2995.	2.6	4
564	Oligosaccharide Presentation Modulates the Molecular Recognition of Glycolipids by Galectins on Membrane Surfaces. Pharmaceuticals, 2022, 15, 145.	3.8	4
565	Experimental evidence for the existence of non-exo-anomeric conformations in branched oligosaccharides: the neomycin-B case. Chemical Communications, 2002, , 2232-2233.	4.1	3
566	Studies on the Conformational Features of Neomycin-B and its Molecular Recognition by RNA and Bacterial Defense Proteins. Topics in Current Chemistry, 2007, 273, 117-138.	4.0	3
567	NMR Investigation of the Bound Conformation of Natural and Synthetic Oligomannosides to Banana Lectin. European Journal of Organic Chemistry, 2007, 2007, 1577-1585.	2.4	3
568	The conformational behaviour of the C-glycosyl analogue of sulfatide studied by NMR in SDS micelles. Carbohydrate Research, 2007, 342, 1966-1973.	2.3	3
569	Solution Conformation and Dynamics of the Oâ€Antigen of the Major Lipopolysaccharide from <i>Sinorhizobium fredii</i> SMH12. European Journal of Organic Chemistry, 2008, 2008, 3469-3473.	2.4	3
570	Biomolecular Recognition by Oligosaccharides and Glycopeptides: The NMR Point of View. , 2010, , 197-246.		3
571	Towards sugar derivatives as toxin-blocking pharmaceuticals: STD NMR spectroscopy as versatile tool for affinity assessment in drug development. Comptes Rendus Chimie, 2011, 14, 96-101.	0.5	3
572	The Interaction of Saccharides with Antibodies. A 3D View by Using NMR. , 2012, , 385-402.		3
573	Role of the sugar moiety on the opioid receptor binding and conformation of a series of enkephalin neoglycopeptides. Bioorganic and Medicinal Chemistry, 2017, 25, 2260-2265.	3.0	3
574	Synthesis, Profiling, and Bioactive Conformation of trans yclopropyl Epothilones. Helvetica Chimica Acta, 2019, 102, e1900078.	1.6	3
575	Minimal epitope for Mannitou IgM on paucimannose-carrying glycoproteins. Glycobiology, 2021, 31, 1005-1017.	2.5	3
576	Selective 13 C‣abels on Repeating Glycan Oligomers to Reveal Protein Binding Epitopes through NMR: Polylactosamine Binding to Galectins. Angewandte Chemie, 2021, 133, 18925-18930.	2.0	3

#	Article	IF	CITATIONS
577	Synthesis, conformational analysis and glycosidase inhibition of bicyclic nojirimycin C-glycosides based on an octahydrofuro[3,2-b]pyridine motif. Carbohydrate Research, 2022, 511, 108491.	2.3	3
578	The solid state and solution conformation of 3,4,6-tri-O-acetyl-1,2-O-isopropylidene-α-d-galactopyranose. Carbohydrate Research, 1987, 170, 100-105.	2.3	2
579	The Solution Conformation of Lactal and ITS Hexa- <i>O</i> -Acetyl Derivative. Journal of Carbohydrate Chemistry, 1992, 11, 903-919.	1.1	2
580	Studies on the solution conformation and dynamics of a polysaccharide from Sinorhizobium fredii HH103 and its monosaccharide repeating unit. Journal of Molecular Graphics and Modelling, 2000, 18, 135-142.	2.4	2
581	Conformational selection of non-hydrolyzable glycomimetics: the conformation of N,N′-diacetylthiochitobiose bound to wheat germ agglutinin. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 867-872.	1.3	2
582	Characterization of caged compounds binding to proteins by NMR spectroscopy. Biochemical and Biophysical Research Communications, 2010, 400, 447-451.	2.1	2
583	Inside Cover: Stereoselective Formation of Chiral Metallopeptides (Chem. Eur. J. 23/2012). Chemistry - A European Journal, 2012, 18, 6990-6990.	3.3	2
584	CHAPTER 1. New Applications of Highâ€Resolution NMR in Drug Discovery and Development. New Developments in NMR, 2013, , 7-42.	0.1	2
585	Exploring the Role of Solvent on Carbohydrate–Aryl Interactions by Diffusion NMR-Based Studies. ACS Omega, 2018, 3, 536-543.	3.5	2
586	Celebrating 5 Years of Open Access with <i>ACS Omega</i> . ACS Omega, 2020, 5, 16986-16986.	3.5	2
587	Scientific Response to the Coronavirus Crisis in Spain: Collaboration and Multidisciplinarity. ACS Chemical Biology, 2020, 15, 1722-1723.	3.4	2
588	Nuclear Magnetic Resonance Techniques for the Study of Glycan Interactions. , 2021, , 329-345.		2
589	Recent advances in the application of NMR methods to uncover the conformation and recognition features of glycans. Carbohydrate Chemistry, 0, , 47-82.	0.3	2
590	Structure of a Cell Wall Rhamnogalactomannan Isolated from Cubonia bulbifera. Journal of Carbohydrate Chemistry, 2003, 22, 603-611.	1.1	1
591	NMR Investigations of Lectin—Carbohydrate Interactions. , 2007, , 51-73.		1
592	Reply to Behrman: "N-Formylmaleamic acid: An intermediate in nicotinic acid metabolism". Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, E89-E89.	7.1	1
593	Influence of polar side chains modifications on the dual enkephalinase inhibitory activity and conformation of human opiorphin, a pain perception related peptide. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5190-5193.	2.2	1
594	Chemistry of Lipidâ€A: At the Heart of Innate Immunity. Chemistry - A European Journal, 2015, 21, 477-477.	3.3	1

#	Article	IF	CITATIONS
595	Unveiling the role of pyrylium frameworks on π-stacking interactions: a combined <i>ab initio</i> and experimental study. Physical Chemistry Chemical Physics, 2022, 24, 1965-1973.	2.8	1
596	Synthesis and chelation study of a fluoroionophore and a glycopeptide based on an aza crown iminosugar structure. Carbohydrate Research, 2021, 501, 108258.	2.3	1
597	CHAPTER 5. Lanthanide-Chelating Carbohydrate Conjugates to Detect Carbohydrate–Protein Interactions. New Developments in NMR, 0, , 150-160.	0.1	1
598	Conformational Analysis of Peptides and Glycopeptides Derived from the Consensus Sequence for β-O-Glucosylation. Current Topics in Medicinal Chemistry, 2015, 14, 2712-2721.	2.1	1
599	Assessing the Mobility of Severe Acute Respiratory Syndrome Coronavirus-2 Spike Protein Glycans by Structural and Computational Methods. Frontiers in Microbiology, 2022, 13, 870938.	3.5	1
600	Studies on the Solution Conformation and Dynamics of the Trisaccharide Repeating Unit of the Kps from Sinorhizobium Fredii Svq293. Journal of Carbohydrate Chemistry, 1999, 18, 891-903.	1.1	0
601	Relaxation and Dynamics. , 0, , 1-21.		0
602	The First Synthesis of Substituted Azepanes Mimicking Monosaccharides: A New Class of Potent Glycosidase Inhibitors ChemInform, 2004, 35, no.	0.0	0
603	Interaction between a Minimum Hevein Domain and Chitooligosaccharides Studied by NMR and a Novel Surface Plasmon Resonance Method. , 2006, , 767-768.		0
604	Inside Cover: A Synthetic Lectin for O-Linked β-N-Acetylglucosamine (Angew. Chem. Int. Ed. 10/2009). Angewandte Chemie - International Edition, 2009, 48, 1698-1698.	13.8	0
605	Inside Cover: Lectinâ€Based Drug Design: Combined Strategy to Identify Lead Compounds using STD NMR Spectroscopy, Solidâ€Phase Assays and Cell Binding for a Plant Toxin Model (ChemMedChem 3/2010). ChemMedChem, 2010, 5, 314-314.	3.2	0
606	Synthesis and Conformational Analysis of Heterogeneous Cyclic Oligomers of 6â€Aminoâ€6â€deoxygalactonic Acid and Phenylalanine. European Journal of Organic Chemistry, 2012, 2012, 5701-5711.	2.4	0
607	Advanced NMR Techniques: Defining Carbohydrate Structures and Ligand–Receptor Interactions. , 2015, , 121-146.		0
608	<i>In My Element</i> : Fluorine. Chemistry - A European Journal, 2019, 25, 896-896.	3.3	0
609	Breaking the limits in analyzing carbohydrate recognition by NMR: Resolving Branch―Selective	0.5	Ο