
Rudolf Zentel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2015337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticular Carriers As Objects to Study Intentional and Unintentional Bioconjugation. ACS Biomaterials Science and Engineering, 2024, 10, 3-11.	2.6	0
2	From Selfâ€Organization to Tumorâ€immune Therapy: How Things Started and How They Evolved. Macromolecular Rapid Communications, 2022, 43, .	2.0	1
3	Squaric Esterâ€Based Nanogels Induce No Distinct Protein Corona but Entrap Plasma Proteins into their Porous Hydrogel Network. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
4	Origin of enhanced efficiency and stability in diblock copolymer-grafted Cd-free quantum dot-based light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 10398-10405.	2.7	9
5	Effect of Core rosslinking on Protein Corona Formation on Polymeric Micelles. Macromolecular Bioscience, 2021, 21, e2000414.	2.1	10
6	RAFT Synthesis of Reactive Multifunctional Triblockâ€Copolymers for Polyplex Formation. Macromolecular Chemistry and Physics, 2021, 222, 2100122.	1.1	3
7	Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells. ACS Nano, 2021, 15, 15191-15209.	7.3	32
8	LCâ€Polymers and Smectic Phases with Special Substructures/Nanophase Segregation. Macromolecular Chemistry and Physics, 2021, 222, 2100216.	1.1	4
9	Influences of Orthoâ€Fluoroazobenzenes on Liquid Crystalline Phase Stability and 2D (Planar) Actuation Properties of Liquid Crystalline Elastomers. Macromolecular Chemistry and Physics, 2020, 221, 1900265.	1.1	11
10	Improved SiRNA Loading of Cationic Nanohydrogel Particles by Variation of Crosslinking Density. Macromolecular Chemistry and Physics, 2020, 221, 1900298.	1.1	1
11	Versatile, Multifunctional Block Copolymers for the Self-Assembly of Well-Defined, Nontoxic pDNA Polyplexes. ACS Applied Polymer Materials, 2020, 2, 5469-5481.	2.0	4
12	In Vivo siRNA Delivery to Immunosuppressive Liver Macrophages by α-Mannosyl-Functionalized Cationic Nanohydrogel Particles. Cells, 2020, 9, 1905.	1.8	36
13	Nanoparticles in the Biological Context: Surface Morphology and Protein Corona Formation. Small, 2020, 16, e2002162.	5.2	60
14	Polymeric Nanoparticles: Polymeric Nanoparticles with Neglectable Protein Corona (Small 18/2020). Small, 2020, 16, 2070100.	5.2	2
15	Polymeric Nanoparticles with Neglectable Protein Corona. Small, 2020, 16, e1907574.	5.2	95
16	Polymer Coated Semiconducting Nanoparticles for Hybrid Materials. Inorganics, 2020, 8, 20.	1.2	7
17	Functional liquid crystalline particles and beyond. Liquid Crystals, 2019, 46, 2023-2041.	0.9	22
18	HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules, 2019, 20, 3786-3797.	2.6	9

#	Article	IF	CITATIONS
19	Overcoming the barrier of CD8+ T cells: Two types of nano-sized carriers for siRNA transport. Acta Biomaterialia, 2019, 100, 338-351.	4.1	10
20	Suppression of electron trapping by quantum dot emitters using a grafted polystyrene shell. Materials Horizons, 2019, 6, 2024-2031.	6.4	8
21	αâ€Mannosylâ€Functionalized Cationic Nanohydrogel Particles for Targeted Gene Knockdown in Immunosuppressive Macrophages. Macromolecular Bioscience, 2019, 19, e1900162.	2.1	16
22	Microfluidic Synthesis of Liquid Crystalline Elastomer Particle Transport Systems which Can Be Remote ontrolled Magnetically. Advanced Functional Materials, 2019, 29, 1902454.	7.8	32
23	HPMAâ€Based Nanocarriers for Effective Immune System Stimulation. Macromolecular Bioscience, 2019, 19, e1800481.	2.1	21
24	From LCâ€polymers to Nanomedicines: Different Aspects of Polymer Science from a Materials Viewpoint. Macromolecular Chemistry and Physics, 2019, 220, 1900448.	1.1	2
25	Ga[Ga]-, In[In]-oxine: a novel strategy of radiolabeling of HPMA-based micelles. American Journal of Nuclear Medicine and Molecular Imaging, 2019, 9, 67-83.	1.0	2
26	Interfacial Selfâ€Assembly of Amphiphilic Dual Temperature Responsive Actuating Janus Particles. Advanced Functional Materials, 2018, 28, 1800629.	7.8	49
27	Long-term biodistribution study of HPMA- ran -LMA copolymers in vivo by means of 131 I-labeling. Nuclear Medicine and Biology, 2018, 58, 59-66.	0.3	7
28	Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging. EJNMMI Research, 2018, 8, 16.	1.1	9
29	Living Light-Induced Crystallization-Driven Self-Assembly for Rapid Preparation of Semiconducting Nanofibers. Journal of the American Chemical Society, 2018, 140, 6088-6094.	6.6	116
30	Microfluidic Preparation of Liquid Crystalline Elastomer Actuators. Journal of Visualized Experiments, 2018, , .	0.2	2
31	Site-Specific DBCO Modification of DEC205 Antibody for Polymer Conjugation. Polymers, 2018, 10, 141.	2.0	13
32	Actuating thermo- and photo-responsive tubes from liquid crystalline elastomers. Journal of Materials Chemistry C, 2018, 6, 9093-9101.	2.7	34
33	Conducting Polymer with Orthogonal Catechol and Disulfide Anchor Groups for the Assembly of Inorganic Nanostructures. Macromolecules, 2017, 50, 3779-3788.	2.2	6
34	Liquid crystalline phases from polymer functionalized ferri-magnetic Fe ₃ O ₄ nanorods. Journal of Materials Chemistry C, 2017, 5, 6688-6696.	2.7	18
35	Self-assembled three-dimensional inverted photonic crystals on a photonic chip. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700039.	0.8	2
36	Cationic Nanohydrogel Particles for Therapeutic Oligonucleotide Delivery. Macromolecular Bioscience, 2017, 17, 1700092.	2.1	28

#	Article	IF	CITATIONS
37	Polymeric Selectin Ligands Mimicking Complex Carbohydrates: From Selectin Binders to Modifiers of Macrophage Migration. Angewandte Chemie - International Edition, 2017, 56, 1416-1421.	7.2	41
38	SiRNA-mediated in vivo gene knockdown by acid-degradable cationic nanohydrogel particles. Journal of Controlled Release, 2017, 248, 10-23.	4.8	51
39	Immunomodulatory Therapy of Inflammatory Liver Disease Using Selectin-Binding Glycopolymers. ACS Nano, 2017, 11, 9689-9700.	7.3	36
40	Size Tunable Core Crosslinked Micelles from HPMAâ€Based Amphiphilic Block Copolymers. Macromolecular Chemistry and Physics, 2017, 218, 1700113.	1.1	7
41	Polymere Selectinliganden als komplexe Glykomimetika: von Selectinbindung bis zur Modifizierung der Makrophagenmigration. Angewandte Chemie, 2017, 129, 1438-1443.	1.6	2
42	MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. Journal of Materials Chemistry C, 2017, 5, 12635-12644.	2.7	16
43	Targeting distinct myeloid cell populations inÂvivo using polymers, liposomes and microbubbles. Biomaterials, 2017, 114, 106-120.	5.7	63
44	Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia. International Journal of Nanomedicine, 2017, Volume 12, 5571-5584.	3.3	17
45	Block copolymers from ionic liquids for the preparation of thin carbonaceous shells. Beilstein Journal of Organic Chemistry, 2017, 13, 1693-1701.	1.3	2
46	Electroactive Liquid Crystalline Polymers â~ț. , 2017, , .		0
47	Functionalization of P3HT with Various Mono- and Multidentate Anchor Groups. Journal of the Brazilian Chemical Society, 2017, , .	0.6	2
48	Microfluidic Synthesis of Actuating Microparticles from a Thiol-Ene Based Main-Chain Liquid Crystalline Elastomer. Polymers, 2016, 8, 410.	2.0	26
49	Influence of a Crosslinker Containing an Azo Group on the Actuation Properties of a Photoactuating LCE System. Polymers, 2016, 8, 435.	2.0	32
50	UVâ€Free Microfluidic Particle Fabrication at Low Temperature Using ARGETâ€ATRP as the Initiator System. Macromolecular Reaction Engineering, 2016, 10, 611-617.	0.9	5
51	Amphiphilic Copolymers Shuttle Drugs Across the Blood–Brain Barrier. Macromolecular Bioscience, 2016, 16, 655-665.	2.1	9
52	Reductive Decationizable Block Copolymers for Stimuli-Responsive mRNA Delivery. Macromolecular Rapid Communications, 2016, 37, 924-933.	2.0	36
53	Extraordinary Performance of Carbon oated Anatase TiO ₂ as Sodiumâ€ion Anode. Advanced Energy Materials, 2016, 6, 1501489.	10.2	205
54	Better Actuation Through Chemistry: Using Surface Coatings to Create Uniform Director Fields in Nematic Liquid Crystal Elastomers. ACS Applied Materials & Interfaces, 2016, 8, 12466-12472.	4.0	21

#	Article	IF	CITATIONS
55	Synthesis of Functional Block Copolymers Carrying One Poly(<i>p</i> -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure. Macromolecules, 2016, 49, 2085-2095.	2.2	15
56	Multidentate Polysarcosine-Based Ligands for Water-Soluble Quantum Dots. Macromolecules, 2016, 49, 3663-3671.	2.2	43
57	Microfluidic synthesis of micrometer-sized photoresponsive actuators based on liquid crystalline elastomers. Journal of Materials Chemistry C, 2016, 4, 8670-8678.	2.7	27
58	Co-flow microfluidic synthesis of liquid crystalline actuating Janus particles. Journal of Materials Chemistry C, 2016, 4, 8778-8786.	2.7	37
59	Functionalization of Active Ester-Based Polymersomes for Enhanced Cell Uptake and Stimuli-Responsive Cargo Release. Biomacromolecules, 2016, 17, 3305-3317.	2.6	29
60	Nanomedicine for immunotherapy. Nanomedicine, 2016, 11, 2619-2620.	1.7	7
61	Bioreducible Polyâ€ <scp>l</scp> ‣ysine–Poly[HPMA] Block Copolymers Obtained by RAFTâ€Polymerization as Efficient Polyplexâ€Transfection Reagents. Macromolecular Bioscience, 2016, 16, 106-120.	2.1	18
62	Pentafluorophenyl Esterâ€based Polymersomes as Nanosized Drugâ€Delivery Vehicles. Macromolecular Rapid Communications, 2016, 37, 60-66.	2.0	15
63	Nanoparticles and the immune system: challenges and opportunities. Nanomedicine, 2016, 11, 2621-2624.	1.7	30
64	Targeting cells of the immune system: mannosylated HPMA–LMA block-copolymer micelles for targeting of dendritic cells. Nanomedicine, 2016, 11, 2679-2697.	1.7	22
65	The Role of Emission Layer Morphology on the Enhanced Performance of Lightâ€Emitting Diodes Based on Quantum Dotâ€Semiconducting Polymer Hybrids. Advanced Materials Interfaces, 2016, 3, 1600279.	1.9	33
66	Muscular MEMS—the engineering of liquid crystal elastomer actuators. Smart Materials and Structures, 2016, 25, 085010.	1.8	27
67	Facile hybridization of Ni@Fe2O3 superparticles with functionalized reduced graphene oxide and its application as anode material in lithium-ion batteries. Journal of Colloid and Interface Science, 2016, 478, 155-163.	5.0	16
68	Colloidal Nanoplatelet/Conducting Polymer Hybrids: Excitonic and Material Properties. Journal of Physical Chemistry C, 2016, 120, 3573-3582.	1.5	11
69	HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules. Acta Biomaterialia, 2016, 35, 12-22.	4.1	7
70	Synthesis and characterization of carbon coated sponge-like tin oxide (SnO _x) films and their application as electrode materials in lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 612-619.	5.2	37
71	Side-chain conjugated polymers for use in the active layers of hybrid semiconducting polymer/quantum dot light emitting diodes. Polymer Chemistry, 2016, 7, 101-112.	1.9	24
72	In Vivo Gene‧ilencing in Fibrotic Liver by siRNA‣oaded Cationic Nanohydrogel Particles. Advanced Healthcare Materials, 2015, 4, 2809-2815.	3.9	39

#	Article	IF	CITATIONS
73	Poly- <scp>l</scp> -Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT Polymerization as Polyplex-Transfection Reagents with Minimal Toxicity. Macromolecular Bioscience, 2015, 15, 1159-1173.	2.1	19
74	Carbon-Coated Anatase TiO ₂ Nanotubes for Li- and Na-Ion Anodes. Journal of the Electrochemical Society, 2015, 162, A3013-A3020.	1.3	80
75	CpGâ€Loaded Multifunctional Cationic Nanohydrogel Particles as Selfâ€Adjuvanting Glycopeptide Antitumor Vaccines. Advanced Healthcare Materials, 2015, 4, 522-527.	3.9	46
76	Precursor Polymers for the Carbon Coating of Au@ZnO Multipods for Application as Active Material in Lithiumâ€kon Batteries. Macromolecular Rapid Communications, 2015, 36, 1075-1082.	2.0	30
77	Morphology Control in Biphasic Hybrid Systems of Semiconducting Materials. Macromolecular Rapid Communications, 2015, 36, 959-983.	2.0	32
78	Design, Synthesis, and Use of Y-Shaped ATRP/NMP Surface Tethered Initiator. ACS Macro Letters, 2015, 4, 606-610.	2.3	17
79	Facile Synthesis of Fluorescent Polymer Nanoparticles by Covalent Modification–Nanoprecipitation of Amineâ€Reactive Ester Polymers. Macromolecular Rapid Communications, 2015, 36, 1089-1095.	2.0	19
80	New Techniques to Assess In Vitro Release of siRNA from Nanoscale Polyplexes. Pharmaceutical Research, 2015, 32, 1957-1974.	1.7	18
81	Photosensitive Functionalized Surfaceâ€Modified Quantum Dots for Polymeric Structures via Twoâ€Photonâ€Initiated Polymerization Technique. Macromolecular Rapid Communications, 2015, 36, 1108-1114.	2.0	28
82	Not just for tumor targeting: unmet medical needs and opportunities for nanomedicine. Nanomedicine, 2015, 10, 3147-3166.	1.7	23
83	Reactivity Studies of Alkoxy-Substituted [2.2]Paracyclophane-1,9-dienes and Specific Coordination of the Monomer Repeating Unit during ROMP. Macromolecules, 2015, 48, 7435-7445.	2.2	27
84	Smart artificial muscle actuators: Liquid crystal elastomers with integrated temperature feedback. Sensors and Actuators A: Physical, 2015, 231, 44-51.	2.0	82
85	A thermotropic liquid crystal elastomer micro-actuator with integrated deformable micro-heater. , 2014, , .		11
86	Degradable Cationic Nanohydrogel Particles for Stimuliâ€Responsive Release of siRNA. Macromolecular Rapid Communications, 2014, 35, 2057-2064.	2.0	36
87	Functionalization of TiO ₂ Nanoparticles with Semiconducting Polymers Containing a Photocleavable Anchor Group and Separation via Irradiation Afterward. Macromolecular Chemistry and Physics, 2014, 215, 604-613.	1.1	10
88	New Perspectives of HPMAâ€based Copolymers Derived by Postâ€Polymerization Modification. Macromolecular Bioscience, 2014, 14, 607-618.	2.1	55
89	A Deeper Insight into the Postpolymerization Modification of Polypenta Fluorophenyl Methacrylates to Poly(<i>N</i> â€(2â€Hydroxypropyl) Methacrylamide). Macromolecular Rapid Communications, 2014, 35, 1522-1527.	2.0	36
90	Back Cover: Macromol. Biosci. 10/2014. Macromolecular Bioscience, 2014, 14, 1506-1506.	2.1	0

#	Article	IF	CITATIONS
91	Strategy for Good Dispersion of Wellâ€Defined Tetrapods in Semiconducting Polymer Matrices. Macromolecular Rapid Communications, 2014, 35, 1685-1691.	2.0	12
92	Dual Functionalization of Nanostructures of Block Copolymers with Quantum Dots and Organic Fluorophores. Macromolecular Chemistry and Physics, 2014, 215, 654-661.	1.1	4
93	Liquidâ€Crystalline Elastomer Fibers Prepared in a Microfluidic Device. Macromolecular Chemistry and Physics, 2014, 215, 1004-1011.	1.1	33
94	Irisâ€Like Tunable Aperture Employing Liquidâ€Crystal Elastomers. Advanced Materials, 2014, 26, 7247-7251.	11.1	195
95	Toward Anticancer Immunotherapeutics: Wellâ€Defined Polymer–Antibody Conjugates for Selective Dendritic Cell Targeting. Macromolecular Bioscience, 2014, 14, 1444-1457.	2.1	22
96	Poly(<i>N</i> â€isopropylacrylamide)â€Modified Styreneâ€Butadiene Rubber as Thermoresponsive Material. Macromolecular Chemistry and Physics, 2014, 215, 32-43.	1.1	10
97	Size-Dependent Knockdown Potential of siRNA-Loaded Cationic Nanohydrogel Particles. Biomacromolecules, 2014, 15, 4111-4121.	2.6	59
98	RAFT-polymerized poly(hexafluoroisopropyl methacrylate)s as precursors for functional water-soluble polymers. Polymer Chemistry, 2014, 5, 2484.	1.9	24
99	Reduced efficiency roll-off in light-emitting diodes enabled by quantum dot–conducting polymer nanohybrids. Journal of Materials Chemistry C, 2014, 2, 4974-4979.	2.7	36
100	Distributed feedback lasing in cellulose films. Optical Materials Express, 2014, 4, 162.	1.6	9
101	Fabrication of Single Cylindrical Au-Coated Nanopores with Non-Homogeneous Fixed Charge Distribution Exhibiting High Current Rectifications. ACS Applied Materials & Interfaces, 2014, 6, 12486-12494.	4.0	55
102	¹⁸ Fâ€Radiolabeling, Preliminary Evaluation of Folateâ€pHPMA Conjugates via PET. Macromolecular Bioscience, 2014, 14, 1396-1405.	2.1	11
103	A Minimal Hydrophobicity Is Needed To Employ Amphiphilic p(HPMA)-co-p(LMA) Random Copolymers in Membrane Research. Biochemistry, 2014, 53, 1410-1419.	1.2	13
104	Patterned monomolecular films from polymerizable and fluorinated lipids for the presentation of glycosylated lipids. Colloid and Polymer Science, 2014, 292, 1803-1815.	1.0	2
105	Stabilizing nanostructured lithium insertion materials via organic hybridization: A step forward towards high-power batteries. Journal of Power Sources, 2014, 248, 852-860.	4.0	15
106	Aggregation Behavior of Cationic Nanohydrogel Particles in Human Blood Serum. Biomacromolecules, 2014, 15, 1526-1533.	2.6	60
107	Interaction of <i>N</i> -(2-Hydroxypropyl)Methacrylamide Based Homo, Random and Block Copolymers with Primary Immune Cells. Journal of Biomedical Nanotechnology, 2014, 10, 81-91.	0.5	6
108	Liquidâ€Crystalline Ordering as a Concept in Materials Science: From Semiconductors to Stimuliâ€Responsive Devices. Angewandte Chemie - International Edition, 2013, 52, 8810-8827.	7.2	280

#	Article	IF	CITATIONS
109	Waterâ€Soluble Polymers Coupled with Glycopeptide Antigens and Tâ€Cell Epitopes as Potential Antitumor Vaccines. Angewandte Chemie - International Edition, 2013, 52, 10652-10656.	7.2	83
110	PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo : A quantitative study using radiolabeling and positron emission tomography. Journal of Controlled Release, 2013, 172, 77-85.	4.8	60
111	Microactuators from a main-chain liquid crystalline elastomer via thiol–ene "click―chemistry. Journal of Materials Chemistry C, 2013, 1, 5885.	2.7	35
112	Light-induced charge separation in a donor–chromophore–acceptor nanocomposite poly[TPA-Ru(tpy)2]@ZnO. Journal of Materials Chemistry C, 2013, 1, 1223-1230.	2.7	26
113	Photoinduced Charge Separation of Selfâ€Organized Semiconducting Superstructures Composed of a Functional Polymer–TiO ₂ Hybrid. Macromolecular Chemistry and Physics, 2013, 214, 975-984.	1.1	12
114	The effect of band gap alignment on the hole transport from semiconducting block copolymers to quantum dots. Journal of Materials Chemistry C, 2013, 1, 1722.	2.7	32
115	Interaction of pHPMA–pLMA Copolymers with Human Blood Serum and Its Components. Molecular Pharmaceutics, 2013, 10, 3769-3775.	2.3	22
116	Polyacrylonitrile Block Copolymers for the Preparation of a Thin Carbon Coating Around TiO ₂ Nanorods for Advanced Lithiumâ€lon Batteries. Macromolecular Rapid Communications, 2013, 34, 1693-1700.	2.0	31
117	Combining Ring-Opening Multibranching and RAFT Polymerization: Multifunctional Linear–Hyperbranched Block Copolymers via Hyperbranched Macro-Chain-Transfer Agents. Macromolecules, 2013, 46, 2892-2904.	2.2	29
118	Controlled Synthesis of CdSe Tetrapods with High Morphological Uniformity by the Persistent Kinetic Growth and the Halide-Mediated Phase Transformation. Chemistry of Materials, 2013, 25, 1443-1449.	3.2	75
119	HPMA-LMA Copolymer Drug Carriers in Oncology: An in Vivo PET Study to Assess the Tumor Line-Specific Polymer Uptake and Body Distribution. Biomacromolecules, 2013, 14, 3091-3101.	2.6	30
120	Supramolecular Linear- <i>g</i> -Hyperbranched Graft Polymers: Topology and Binding Strength of Hyperbranched Side Chains. Macromolecules, 2013, 46, 9544-9553.	2.2	49
121	High Optical Quality Films of Liquid Crystalline Cellulose Derivatives in Acrylates. Macromolecular Chemistry and Physics, 2013, 214, 2405-2414.	1.1	12
122	Directing the Selfâ€Assembly of Semiconducting Copolymers: The Consequences of Grafting Linear or Hyperbranched Polyether Side Chains. Macromolecular Rapid Communications, 2013, 34, 1213-1219.	2.0	8
123	Synthesis of Maleimideâ€Functionalyzed HPMAâ€Copolymers and in vitro Characterization of the aRAGE― and Human Immunoglobulin (hulgC)–Polymer Conjugates. Macromolecular Bioscience, 2013, 13, 203-214.	2.1	14
124	Engineering Polymer Microparticles by Droplet Microfluidics. Journal of Flow Chemistry, 2013, 3, 66-75.	1.2	26
125	Amphiphilic HPMA–LMA copolymers increase the transport of Rhodamine 123 across a BBB model without harming its barrier integrity. Journal of Controlled Release, 2012, 163, 170-177.	4.8	39
126	HPMA Copolymers as Surfactants in the Preparation of Biocompatible Nanoparticles for Biomedical Application. Biomacromolecules, 2012, 13, 4179-4187.	2.6	30

#	Article	IF	CITATIONS
127	Towards tunable defect arrangements in smectic liquid crystal shells utilizing the nematic–smectic transition in hybrid-aligned geometries. Soft Matter, 2012, 8, 5443.	1.2	50
128	Mechanical and optical properties of continuously spun fibres of a main-chain smectic A elastomer. Soft Matter, 2012, 8, 1858-1864.	1.2	13
129	Aggregation Behavior of Amphiphilic p(HPMA)- <i>co</i> -p(LMA) Copolymers Studied by FCS and EPR Spectroscopy. Biomacromolecules, 2012, 13, 4065-4074.	2.6	28
130	Preparation of Soft Microactuators in a Continuous Flow Synthesis Using a Liquidâ€Crystalline Polymer Crosslinker. Macromolecular Chemistry and Physics, 2012, 213, 1871-1878.	1.1	16
131	Electroactive Liquid Crystalline Polymers. , 2012, , 129-145.		2
132	Cationic Nanohydrogel Particles as Potential siRNA Carriers for Cellular Delivery. ACS Nano, 2012, 6, 2198-2214.	7.3	111
133	Applications of Liquid Crystalline Elastomers. Advances in Polymer Science, 2012, , 49-93.	0.4	60
134	One-piece micropumps from liquid crystalline core-shell particles. Nature Communications, 2012, 3, 1178.	5.8	125
135	P(HPMA)-block-P(LA) copolymers in paclitaxel formulations: Polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellular localization and drug efficiency. Journal of Controlled Release, 2012, 163, 63-74.	4.8	34
136	Emission of Rhodamine B in PMMA opals for luminescent solar concentrators. Proceedings of SPIE, 2012, , .	0.8	3
137	Linear-Hyperbranched Graft-Copolymers via <i>Grafting-to</i> Strategy Based on Hyperbranched Dendron Analogues and Reactive Ester Polymers. Macromolecules, 2012, 45, 5901-5910.	2.2	39
138	Noise-Assisted Crystallization of Opal Films. Advanced Functional Materials, 2012, 22, 1812-1821.	7.8	30
139	Bioinspired Actuated Adhesive Patterns of Liquid Crystalline Elastomers. Advanced Materials, 2012, 24, 4601-4604.	11.1	110
140	Organic nanosheets with charged surface: two dimensional self-assembly of a non-symmetric bis-acylurea with pyridyl end group. Soft Matter, 2011, 7, 2019-2024.	1.2	4
141	Electrodeposition of ZnO nanorods on opaline replica as hierarchically structured systems. Journal of Materials Chemistry, 2011, 21, 1079-1085.	6.7	3
142	Preparation of actuating fibres of oriented main-chain liquid crystalline elastomers by a wetspinning process. Soft Matter, 2011, 7, 3730.	1.2	52
143	Preparation of cholesteric particles from cellulose derivatives in a microfluidic setup. Soft Matter, 2011, 7, 2340.	1.2	13
144	Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polymer Chemistry, 2011, 2, 1900.	1.9	356

#	Article	IF	CITATIONS
145	Modifying the Body Distribution of HPMA-Based Copolymers by Molecular Weight and Aggregate Formation. Biomacromolecules, 2011, 12, 2841-2849.	2.6	72
146	Microfluidic Synthesis of Highly Shape-Anisotropic Particles from Liquid Crystalline Elastomers with Defined Director Field Configurations. Journal of the American Chemical Society, 2011, 133, 5305-5311.	6.6	84
147	Threeâ€Dimensional Photonic Crystal Intermediate Reflectors for Enhanced Lightâ€Trapping in Tandem Solar Cells. Advanced Materials, 2011, 23, 3896-3900.	11.1	58
148	Controlled fabrication of organic nanotubes via self-assembly of non-symmetric bis-acylurea. Colloid and Polymer Science, 2011, 289, 1855-1862.	1.0	7
149	Templateâ€Based Fabrication of Nanometerâ€Scaled Actuators from Liquidâ€Crystalline Elastomers. Small, 2011, 7, 194-198.	5.2	49
150	Nanosized Shapeâ€Changing Colloids from Liquid Crystalline Elastomers. Macromolecular Rapid Communications, 2011, 32, 88-93.	2.0	27
151	HPMA Based Amphiphilic Copolymers Mediate Central Nervous Effects of Domperidone. Macromolecular Rapid Communications, 2011, 32, 712-717.	2.0	31
152	Macromol. Rapid Commun. 9 \hat{a} \in 10/2011. Macromolecular Rapid Communications, 2011, 32, .	2.0	1
153	Transparent conductive oxide photonic crystals on textured substrates. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 31-34.	1.0	8
154	Simple chiral urea gelators, (R)- and (S)-2-heptylurea: Their gelling ability enhanced by chirality. Journal of Colloid and Interface Science, 2011, 357, 428-433.	5.0	17
155	Two dimensional self-assembly of bis-acylureas having various functional end groups. Journal of Colloid and Interface Science, 2011, 359, 428-435.	5.0	13
156	Control of the Properties of Micrometer‣ized Actuators from Liquid Crystalline Elastomers Prepared in a Microfluidic Setup. Advanced Functional Materials, 2010, 20, 4314-4322.	7.8	53
157	Microactuators: Control of the Properties of Micrometer Sized Actuators from Liquid Crystalline Elastomers Prepared in a Microfluidic Setup (Adv. Funct. Mater. 24/2010). Advanced Functional Materials, 2010, 20, 4210-4210.	7.8	0
158	Liquid Crystalline Elastomers as Actuators and Sensors. Advanced Materials, 2010, 22, 3366-3387.	11.1	923
159	Orientation and Dynamics of ZnO Nanorod Liquid Crystals in Electric Fields. Macromolecular Rapid Communications, 2010, 31, 1101-1107.	2.0	38
160	Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)â€ <i>b</i> â€P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copolymer. Macromolecular Rapid Communications, 2010, 31, 1492-1500.	2.0	34
161	Macromol. Rapid Commun. 17/2010. Macromolecular Rapid Communications, 2010, 31, n/a-n/a.	2.0	0
162	72/74As-labeling of HPMA based polymers for long-term in vivo PET imaging. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5454-5458.	1.0	40

#	Article	IF	CITATIONS
163	Langmuirâ^'Blodgett Films of Biocompatible Poly(HPMA)- <i>block</i> -poly(lauryl methacrylate) and Poly(HPMA)- <i>random</i> -poly(lauryl methacrylate): Influence of Polymer Structure on Membrane Formation and Stability. Langmuir, 2010, 26, 5661-5669.	1.6	25
164	Influence of End Groups on the Stimulus-Responsive Behavior of Poly[oligo(ethylene glycol) methacrylate] in Water. Macromolecules, 2010, 43, 4638-4645.	2.2	133
165	Langmuirâ^'Blodgett Films of Fluorinated Glycolipids and Polymerizable Lipids and Their Phase Separating Behavior. Langmuir, 2010, 26, 18246-18255.	1.6	10
166	Synthesis of Heterotelechelic α,ï‰ Dye-Functionalized Polymer by the RAFT Process and Energy Transfer between the End Groups. Macromolecules, 2010, 43, 895-902.	2.2	57
167	Orientation of Polymer Functionalized Nanorods in Thin Films. Journal of Nanoscience and Nanotechnology, 2010, 10, 6845-6849.	0.9	7
168	Light Induced Charging of Polymer Functionalized Nanorods. Nano Letters, 2010, 10, 2812-2816.	4.5	29
169	Synthesis of Hetero-Telechelic α,ï‰ Bio-Functionalized Polymers. Biomacromolecules, 2010, 11, 238-244.	2.6	99
170	Synthesis and In Vitro Evaluation of Defined HPMA Folate Conjugates: Influence of Aggregation on Folate Receptor (FR) Mediated Cellular Uptake. Biomacromolecules, 2010, 11, 2274-2282.	2.6	64
171	Two-dimensional self-assembly of disulfide functionalized bis-acylurea: a nanosheet template for gold nanoparticle arrays. Chemical Communications, 2010, 46, 5343.	2.2	10
172	Control of mesogen configuration in colloids of liquid crystalline polymers. Soft Matter, 2010, 6, 4112.	1.2	27
173	Functionalized Magnetic Nanoparticles for Selective Targeting of Cells. Materials Research Society Symposia Proceedings, 2009, 1241, 1.	0.1	0
174	Pathogenâ€Mimicking MnO Nanoparticles for Selective Activation of the TLR9 Pathway and Imaging of Cancer Cells. Advanced Functional Materials, 2009, 19, 3717-3725.	7.8	54
175	A Continuous Flow Synthesis of Micrometer‣ized Actuators from Liquid Crystalline Elastomers. Advanced Materials, 2009, 21, 4859-4862.	11.1	160
176	Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Lightâ€Emitting Diodes. Advanced Materials, 2009, 21, 5022-5026.	11.1	90
177	Synthesis of Liquidâ€Crystalline Colloids in Nonpolar Media and their Manipulation in Electric Fields. Macromolecular Chemistry and Physics, 2009, 210, 1394-1401.	1.1	19
178	Pyrene Containing Polymers for the Nonâ€Covalent Functionalization of Carbon Nanotubes. Macromolecular Chemistry and Physics, 2009, 210, 1528-1535.	1.1	43
179	Liquid Crystalline Ordering and Charge Transport in Semiconducting Materials. Macromolecular Rapid Communications, 2009, 30, 1179-1202.	2.0	360
180	Heteroâ€Telechelic Dye‣abeled Polymer for Nanoparticle Decoration. Macromolecular Rapid Communications, 2009, 30, 1274-1278.	2.0	30

#	Article	IF	CITATIONS
181	Selfâ€Organized Materials for Optoelectronic Applications. Macromolecular Rapid Communications, 2009, 30, 1145-1145.	2.0	1
182	α-Pyrene polymer functionalized multiwalled carbon nanotubes: Solubility, stability and depletion phenomena. Polymer, 2009, 50, 154-160.	1.8	63
183	Versatile ωâ€end group functionalization of RAFT polymers using functional methane thiosulfonates. Journal of Polymer Science Part A, 2009, 47, 3118-3130.	2.5	89
184	The uptake of N-(2-hydroxypropyl)-methacrylamide based homo, random and block copolymers by human multi-drug resistant breast adenocarcinoma cells. Biomaterials, 2009, 30, 5682-5690.	5.7	89
185	Radioactive Labeling of Defined HPMA-Based Polymeric Structures Using [¹⁸ F]FETos for In Vivo Imaging by Positron Emission Tomography. Biomacromolecules, 2009, 10, 1697-1703.	2.6	99
186	Quantum Dotâ^'Block Copolymer Hybrids with Improved Properties and Their Application to Quantum Dot Light-Emitting Devices. ACS Nano, 2009, 3, 1063-1068.	7.3	132
187	Synthesis, Characterization, and Hierarchical Organization of Tungsten Oxide Nanorods: Spreading Driven by Marangoni Flow. Journal of the American Chemical Society, 2009, 131, 17566-17575.	6.6	67
188	Non-ionic photo-acid generators for applications in two-photon lithography. Journal of Materials Chemistry, 2009, 19, 505-513.	6.7	40
189	Thin-Films of Poly-Triarylamines for Electro-Optic Applications. Polymer Bulletin, 2008, 59, 795-803.	1.7	6
190	3D photonic crystal intermediate reflector for micromorph thinâ€film tandem solar cell. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2796-2810.	0.8	82
191	Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2811-2821.	0.8	52
192	Functional Diblock Copolymers for the Integration of Triboluminescent Materials into Polymer Matrices. Macromolecular Chemistry and Physics, 2008, 209, 158-167.	1.1	12
193	Novel Amphiphilic Styrene-Based Block Copolymers for Induced Surface Reconstruction. Macromolecular Chemistry and Physics, 2008, 209, 52-63.	1.1	6
194	Liquid Crystalline Orientation of Semiconducting Nanorods in a Semiconducting Matrix. Macromolecular Rapid Communications, 2008, 29, 922-927.	2.0	39
195	From Defined Reactive Diblock Copolymers to Functional HPMA-Based Self-Assembled Nanoaggregates. Biomacromolecules, 2008, 9, 3114-3118.	2.6	105
196	Synthesis of Reactive Telechelic Polymers Based on Pentafluorophenyl Esters. Macromolecules, 2008, 41, 8513-8519.	2.2	99
197	Liquid crystalline phases from polymer functionalised semiconducting nanorods. Journal of Materials Chemistry, 2008, 18, 3050.	6.7	69
198	A Method for Obtaining Defined End Groups of Polymethacrylates Prepared by the RAFT Process during Aminolysis. Macromolecules, 2008, 41, 8316-8319.	2.2	80

#	Article	IF	CITATIONS
199	Gelling and the collective dynamics in ferroelectric liquid crystals. Soft Matter, 2008, 4, 1237.	1.2	15
200	Solubilisation of multi walled carbon nanotubes by α-pyrene functionalised PMMA and their liquid crystalline self-organisation. Chemical Communications, 2008, , 3166.	2.2	61
201	Liquid Crystals from Polymer-Functionalized TiO2 Nanorod Mesogens. Macromolecules, 2008, 41, 7946-7952.	2.2	41
202	Optical transmission in triple-film hetero-opals. Journal of Applied Physics, 2008, 104, .	1.1	12
203	Ferroelectric Lc-Elastomers. Advances in Chemical Physics, 2007, , 159-182.	0.3	2
204	Functional Opals from Reactive Polymers: Complex Structures, Sensors, and Modified Photoluminescence. Macromolecular Symposia, 2007, 254, 210-216.	0.4	2
205	Photoresponsive anisotropic and isotropic gels of semicarbazide–azobenzene organogelators: the use of magnetic polymer colloids to detect gel–sol transformation. Soft Matter, 2007, 3, 1308.	1.2	21
206	Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in a microchannel reactor. Chemical Communications, 2007, , 260-262.	2.2	24
207	Photoimaging through in-Situ Photopolymerization of Heterobifunctional Mesogenic Compounds in Liquid Crystalline State. Macromolecules, 2007, 40, 8349-8354.	2.2	15
208	Photoresponsive Ferroelectric Liquid-Crystalline Polymers. Advanced Functional Materials, 2007, 17, 109-114.	7.8	33
209	Liquid Crystalline Phases from Polymerâ€Functionalized TiO ₂ Nanorods. Advanced Materials, 2007, 19, 2073-2078.	11.1	78
210	Twoâ€Dimensional Aggregation of Organogelators Induced by Biaxial Hydrogenâ€Bonding Gives Supramolecular Nanosheets. Advanced Materials, 2007, 19, 3878-3881.	11.1	63
211	(Photo)crosslinkable Smectic LC Main hain Polymers. Macromolecular Chemistry and Physics, 2007, 208, 2439-2448.	1.1	32
212	Creating Defined 3-D Defects Inside an Opaline Ormocer® Matrix with Two-Photon Lithography. Macromolecular Rapid Communications, 2007, 28, 922-926.	2.0	9
213	Chemical Approach to Functional Artificial Opals. Macromolecular Rapid Communications, 2007, 28, 1291-1311.	2.0	36
214	Monodomain Liquid Crystal Main Chain Elastomers by Photocrosslinking. Macromolecular Rapid Communications, 2007, 28, 1485-1490.	2.0	99
215	Functional Polymerâ€Opals from Core–Shell Colloids. Macromolecular Rapid Communications, 2007, 28, 1987-1994.	2.0	32
216	Functional 3D photonic films from polymer beads. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3618-3635.	0.8	23

#	Article	IF	CITATIONS
217	Polymer based tuneable photonic crystals. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3739-3753.	0.8	8
218	Transmission Anisotropy in Triple-Film Opal Photonic Crystals. , 2006, , .		0
219	Mechanical manipulation of molecular lattice parameters in smectic elastomers. Physical Chemistry Chemical Physics, 2006, 8, 2293-2298.	1.3	21
220	Semicarbazides as gel forming agents for common solvents and liquid crystals. Journal of Materials Chemistry, 2006, 16, 351-358.	6.7	22
221	Integration of Self-Assembled Three-Dimensional Photonic Crystals onto Structured Silicon Wafers. Langmuir, 2006, 22, 7378-7383.	1.6	36
222	Gelation of smectic liquid crystal phases with photosensitive gel forming agents. Soft Matter, 2006, 2, 693-698.	1.2	26
223	Spin-Coating of Designed Functional Planar Defects in Opal Film:Â Generalized Synthesis. Chemistry of Materials, 2006, 18, 5640-5642.	3.2	36
224	Preparation of 3D Photonic Crystals from Opals. , 2006, , 109-131.		4
225	High Contrast Ratio and Rapid Switching Organic Polymeric Electrochromic Thin Films Based on Triarylamine Derivatives from Layer-by-Layer Assembly. Chemistry of Materials, 2006, 18, 5823-5825.	3.2	64
226	Control of CaCO3Crystallization by Demixing of Monolayers. Langmuir, 2006, 22, 11034-11040.	1.6	12
227	Anisotropic Particles from LC Polymers for Optical Manipulation. Macromolecules, 2006, 39, 8326-8333.	2.2	40
228	2D Photonic Defect Layers in 3D Inverted Opals on Si Platforms. , 2006, , .		0
229	Propagation and scattering of light in opal heterojunctions. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 476-479.	1.3	4
230	Ordering and dewetting in spin-coated films of a liquid crystalline main chain polymer. Thin Solid Films, 2006, 514, 165-173.	0.8	26
231	Multilayer Thin Films by Layer-by-Layer Assembly of Hole- and Electron-Transport Polyelectrolytes: Optical and Electrochemical Properties. Macromolecular Chemistry and Physics, 2006, 207, 1870-1879.	1.1	11
232	Fabrication of Robust High-Quality ORMOCER® Inverse Opals. Macromolecular Rapid Communications, 2006, 27, 1746-1751.	2.0	13
233	DNA Designer Defects in Photonic Crystals: Optically Monitored Biochemistry. Advanced Materials, 2006, 18, 2387-2391.	11.1	50

Light Propagation in Heterogeneous Opal-Based Photonic Crystals. , 2006, , .

0

#	Article	IF	CITATIONS
235	Artificially inscribed defects in opal photonic crystals. Microelectronic Engineering, 2005, 78-79, 429-435.	1.1	29
236	Synthesis of pentafluorophenyl(meth)acrylate polymers: New precursor polymers for the synthesis of multifunctional materials. European Polymer Journal, 2005, 41, 1569-1575.	2.6	368
237	CdSe/ZnS Nanocrystals with Dye-Functionalized Polymer Ligands Containing Many Anchor Groups. Angewandte Chemie - International Edition, 2005, 44, 2437-2440.	7.2	79
238	Smectic Liquid-Crystalline Colloids by Miniemulsion Techniques. Advanced Materials, 2005, 17, 2123-2127.	11.1	50
239	Redox-Tunable Defects in Colloidal Photonic Crystals. Advanced Materials, 2005, 17, 2455-2458.	11.1	70
240	Inside Front Cover: Redox-Tunable Defects in Colloidal Photonic Crystals (Adv. Mater. 20/2005). Advanced Materials, 2005, 17, NA-NA.	11.1	0
241	Photoswitchable Smectic Liquid-Crystalline Elastomers. Macromolecular Rapid Communications, 2005, 26, 874-879.	2.0	36
242	Electroclinic effect in free-standing smectic elastomer films. Applied Physics A: Materials Science and Processing, 2005, 80, 381-388.	1.1	50
243	Strainâ€induced compression of smectic layers in freeâ€standing liquid crystalline elastomer films. Liquid Crystals, 2005, 32, 805-813.	0.9	13
244	"Smart―Defects in Colloidal Photonic Crystals. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	1
245	Opaline effect pigments by spray induced selfâ€assembly on porous substrates. Soft Materials, 2005, 3, 121-131.	0.8	28
246	Differences between smectic homo―and coâ€polysiloxanes as a consequence of microphase separation. Liquid Crystals, 2005, 32, 533-538.	0.9	20
247	Amphotropic LC Polymers and Their Multilayer Buildup. Macromolecules, 2005, 38, 9124-9134.	2.2	11
248	Photonic Crystals from Core-Shell Colloids with Incorporated Highly Fluorescent Quantum Dots. Chemistry of Materials, 2005, 17, 1346-1351.	3.2	170
249	Photochemically and Thermally Tunable Planar Defects in Colloidal Photonic Crystals. Journal of the American Chemical Society, 2005, 127, 9318-9319.	6.6	112
250	Study of smectic elastomer films under uniaxial stress. Liquid Crystals, 2004, 31, 895-906.	0.9	27
251	Ferroelectric polysiloxane liquid crystals with â€~de Vries'-type smectic A*–smectic C* transitions. Liquid Crystals, 2004, 31, 883-887.	0.9	42
252	Surfactant-Free Emulsion Polymerization of Various Methacrylates: Towards Monodisperse Colloids for Polymer Opals. Macromolecular Chemistry and Physics, 2004, 205, 1479-1488.	1.1	88

#	Article	IF	CITATIONS
253	Block Copolymers Build-up of Electron and Hole Transport Materials. Macromolecular Chemistry and Physics, 2004, 205, 1633-1643.	1.1	26
254	Amphotropic lonomers by Attachment of Secondary Amines to a Reactive Ester Polymer. Macromolecular Chemistry and Physics, 2004, 205, 2169-2174.	1.1	8
255	Liquid-Crystalline Colloidal Particles. Macromolecular Chemistry and Physics, 2004, 205, 2303-2311.	1.1	36
256	Artificial Opals as Effect Pigments in Clear-Coatings. Macromolecular Materials and Engineering, 2004, 289, 158-163.	1.7	36
257	Light-Induced Demixing of Hole or Electron Transporting Moieties. Macromolecular Rapid Communications, 2004, 25, 1765-1770.	2.0	12
258	Photoprocessable Polymer Opals. Chemistry of Materials, 2004, 16, 5286-5292.	3.2	28
259	Oligothiophenes for Pattern Formation by Stamping. Macromolecular Chemistry and Physics, 2003, 204, 68-75.	1.1	9
260	Thin Films by Multilayer Build-Up of Electron Transport Materials. Macromolecular Rapid Communications, 2003, 24, 1014-1018.	2.0	6
261	α,ï‰-Functionalized poly-N-isopropylacrylamides: controlling the surface activity for vesicle adsorption by temperature. Journal of Colloid and Interface Science, 2003, 268, 258-262.	5.0	16
262	Heterostructures of Polymer Photonic Crystal Films. Chemistry of Materials, 2003, 15, 3786-3792.	3.2	111
263	Semiconductor Nanocrystals with Multifunctional Polymer Ligands. Journal of the American Chemical Society, 2003, 125, 320-321.	6.6	141
264	Hydrogen bonded ferroelectric liquid crystal gels in freely suspended film geometry. Physical Chemistry Chemical Physics, 2003, 5, 916-923.	1.3	14
265	Structuring of self-assembled three-dimensional photonic crystals by direct electron-beam lithography. Applied Physics Letters, 2003, 83, 5289-5291.	1.5	54
266	Structure and elastic properties of smectic liquid crystalline elastomer films. Physical Review E, 2002, 65, 041707.	0.8	41
267	Self-assembly of three-dimensional photonic crystals on structured silicon wafers. Applied Physics Letters, 2002, 81, 2689-2691.	1.5	32
268	Suppression of spontaneous emission in incomplete opaline photonic crystal. Journal of Applied Physics, 2002, 91, 9426-9428.	1.1	30
269	Large Photonic Films by Crystallization on Fluid Substrates. Chemistry of Materials, 2002, 14, 4023-4025.	3.2	93
270	FT-IR Spectroscopic Studies on Reorientation of Ferroelectric Liquid Crystals in a Thermoreversible Gel Network. Macromolecules, 2002, 35, 4150-4154.	2.2	17

#	Article	IF	CITATIONS
271	Tuning the Properties of Photonic Films from Polymer Beads by Chemistry. Chemistry of Materials, 2002, 14, 2176-2183.	3.2	89
272	Chiral Polyisocyanates from an Azomonomer with a Very High Chiral Induction. Macromolecules, 2002, 35, 185-192.	2.2	56
273	LC Ionomers with Phosphonate Groups and Their Multilayer Build-Up. Macromolecular Chemistry and Physics, 2002, 203, 363-374.	1.1	19
274	Tailored Semiconducting Polymers: Living Radical Polymerization and NLO-Functionalization of Triphenylamines. Macromolecular Chemistry and Physics, 2002, 203, 503-510.	1.1	93
275	Towards Plastic Electronics: Patterning Semiconducting Polymers by Nanoimprint Lithography. Advanced Materials, 2002, 14, 588.	11.1	106
276	Synthesis of End-Functionalized Lipopolymers and Their Characterization with Regard to Polymer-Supported Lipid Membranes. Macromolecular Bioscience, 2002, 2, 387-394.	2.1	22
277	Emission in a SnS2 inverted opaline photonic crystal. Applied Physics Letters, 2001, 79, 731-733.	1.5	50
278	Elastic Properties of Liquid Crystal Elastomer Balloons. Molecular Crystals and Liquid Crystals, 2001, 364, 305-312.	0.3	16
279	Liquid Crystal Elastomer Balloons. Macromolecules, 2001, 34, 3962-3972.	2.2	44
280	Reversible Physical Network Stabilized Ferroelectric Liquid Crystals. Advanced Materials, 2001, 13, 1307.	11.1	31
281	Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature, 2001, 410, 447-450.	13.7	408
282	Chiral polyisocyanates, a special class of helical polymers. Progress in Polymer Science, 2001, 26, 1973-2013.	11.8	122
283	Ferroelectric liquid crystalline elastomers, 1. Variation of network topology and orientation. Macromolecular Chemistry and Physics, 2000, 201, 902-910.	1.1	52
284	Ferroelectric liquid crystalline elastomers, 2. Variation of mesogens and network density. Macromolecular Chemistry and Physics, 2000, 201, 911-922.	1.1	41
285	Switching of the helical polymer conformation in a solid polymer film. Macromolecular Rapid Communications, 2000, 21, 927-930.	2.0	25
286	Cholesteric phases and films from cellulose derivatives. Macromolecular Chemistry and Physics, 2000, 201, 2055-2063.	1.1	50
287	Photonic Crystal Films with High Refractive Index Contrast. Advanced Materials, 2000, 12, 1499-1503.	11.1	154
288	Dye-Containing Polymer Beads as Photonic Crystals. Chemistry of Materials, 2000, 12, 2508-2512.	3.2	129

#	Article	IF	CITATIONS
289	Formation of Lipid Bilayers on a New Amphiphilic Polymer Support. Langmuir, 2000, 16, 1801-1805.	1.6	43
290	Formation of Tethered Supported Bilayers by Vesicle Fusion onto Lipopolymer Monolayers Promoted by Osmotic Stress. Langmuir, 2000, 16, 6067-6070.	1.6	62
291	Photonic band-gap effects upon the light emission from a dye–polymer–opal composite. Applied Physics Letters, 1999, 75, 1057-1059.	1.5	59
292	Synthesis and characterization of hydrophilic lipopolymers for the support of lipid bilayers. Macromolecular Chemistry and Physics, 1999, 200, 174-179.	1.1	26
293	Electric-Field-Induced Segmental Reorientation in Ferroelectric Liquid Crystalline Polymers and Elastomers. Macromolecules, 1999, 32, 1570-1575.	2.2	30
294	Mechanical Deformation Behavior in Highly Anisotropic Elastomers Made from Ferroelectric Liquid Crystalline Polymers. Langmuir, 1999, 15, 274-278.	1.6	33
295	Photosensitive chiral polyisocyanates. Macromolecular Symposia, 1999, 137, 67-73.	0.4	4
296	Opalescent Cholesteric Networks from Chiral Polyisocyanates in Polystyrene. Advanced Materials, 1998, 10, 341-345.	11.1	42
297	Optical suppression of ferroelectricity in polysiloxane copolymers with chiral and photochromic side groups. Polymers for Advanced Technologies, 1998, 9, 665-671.	1.6	3
298	Freestanding ferroelectric elastomer films. Macromolecular Rapid Communications, 1998, 19, 341-344.	2.0	28
299	Nematic ionomers as materials for the build-up of multilayers. Macromolecular Chemistry and Physics, 1998, 199, 179-189.	1.1	28
300	Correlation between the Isomerization of Side Groups and the Helical Main Chain in Chiral Polyisocyanates. Macromolecules, 1998, 31, 8522-8525.	2.2	83
301	Chain Folding in Liquid-Crystalline Main-Chain Polymers with a Smectic Phase. Macromolecules, 1998, 31, 9154-9159.	2.2	20
302	Reactions on Vinyl Isocyanate/Maleimide Copolymers:Â NLO-functionalized Polymers with High Glass Transitions for Nonlinear Optical Applications. Macromolecules, 1998, 31, 1454-1465.	2.2	65
303	Time-Resolved Fourier-Transform Infrared Spectroscopy on the Inter- and Intramolecular Orientational Dynamics in Ferroelectric Liquid Crystalline Dimers. Physical Review Letters, 1997, 79, 1686-1689.	2.9	44
304	Ferroelectric block copolymers. Macromolecular Symposia, 1997, 117, 175-179.	0.4	11
305	Ordering and mobility of ferroelectric liquid crystal dimer as studied by FTâ€IR spectroscopy with 2Dâ€IR correlation analysis. Macromolecular Symposia, 1997, 119, 261-268.	0.4	6
306	Layered Nanostructures with LC-Polymers, Polyelectrolytes, and Inorganics. Macromolecules, 1997, 30, 4775-4779.	2.2	60

#	Article	IF	CITATIONS
307	The packing of azobenzene dye moieties and mesogens in polysiloxane copolymers and its impact on the opto-dielectric effect. Liquid Crystals, 1997, 22, 65-74.	0.9	15
308	Induced long-range order in crosslinked â€~one-dimensional' stacks of fluid monolayers. Nature, 1997, 389, 576-579.	13.7	45
309	Solid opalescent films originating from urethanes of cellulose. Advanced Materials, 1997, 9, 159-162.	11.1	21
310	NLO-polymers containingtert-butyloxycarbonyl protecting groups: Modification after processing leading to thermally stable nonlinear optical materials. Advanced Materials, 1997, 9, 225-230.	11.1	9
311	Liquid crystalline main chain polymers containing the ferrocene unit as a side group, 2. Variation of the spacer length. Macromolecular Chemistry and Physics, 1997, 198, 3769-3785.	1.1	39
312	Manipulation of the ferroelectricity in LC polymers via photomechanical isomerization of azobenzene moieties. Macromolecular Chemistry and Physics, 1996, 197, 1805-1813.	1.1	51
313	Liquid crystalline main-chain polymers containing the ferrocene unit as a side group. Macromolecular Chemistry and Physics, 1996, 197, 3259-3268.	1.1	43
314	Combined LC main chain/side chain polymers. Acta Polymerica, 1996, 47, 141-149.	1.4	32
315	Coupling of liquid crystalline and polymer network properties in LC-elastomers. Liquid Crystals, 1996, 21, 589-596.	0.9	74
316	Photo-crosslinking in freely-suspended films of ferroelectric lc-polymers. Advanced Materials, 1995, 7, 849-852.	11.1	16
317	Redox active LC ionomers: LC ionomers as materials for compatible blends with amorphous ionomers. Acta Polymerica, 1995, 46, 25-36.	1.4	27
318	Ferroelectric liquid-crystalline elastomers with short switching times. Macromolecular Rapid Communications, 1995, 16, 659-662.	2.0	48
319	Dimesogenic liquid crystalline oligosiloxanes. Liquid Crystals, 1995, 18, 745-749.	0.9	21
320	Photochemical Inversion of the Helical Twist Sense in Chiral Polyisocyanates. Macromolecules, 1995, 28, 8438-8440.	2.2	133
321	From monomeric to polymeric ferroelectric liquid crystals A comparative study of ferroelectric properties. Liquid Crystals, 1995, 18, 811-818.	0.9	51
322	Structure–property relationships of â€~diluted' ferroelectric polysiloxanes. Liquid Crystals, 1994, 16, 749-767.	0.9	53
323	Liquid Crystalline Elastomers—Characterization as Networks. Molecular Crystals and Liquid Crystals, 1994, 243, 353-376.	0.3	66
324	Liquid Crystalline Polymers. , 1994, , 103-141.		11

Liquid Crystalline Polymers. , 1994, , 103-141. 324

#	Article	IF	CITATIONS
325	Dielectric and electro-optical studies of a ferroelectric copolysiloxane. Physical Review B, 1994, 50, 16346-16356.	1.1	46
326	Pyroelectric and electro-optical effects in the SmC* phase of a polysiloxane liquid crystal. Journal of Applied Physics, 1994, 75, 728-733.	1.1	45
327	Ferroelectric liquid-crystalline elastomers. Macromolecular Chemistry and Physics, 1994, 195, 1891-1904.	1.1	136
328	Redox-active liquid-crystalline ionomers: 1. Synthesis and rheology. Polymer, 1992, 33, 5315-5320.	1.8	70
329	Structure-property relationships determining the spontaneous polarization in FLC-polymers. Advanced Materials, 1992, 4, 351-354.	11.1	44
330	Fast electroclinic switching in a ferroelectric LC-polysiloxane. Advanced Materials, 1992, 4, 792-794.	11.1	28
331	Chiral liquid-crystalline polymers by polymer-analogous reactions. Die Makromolekulare Chemie, 1991, 192, 1859-1872.	1.1	53
332	Mechanical behaviour of liquid-crystalline polymers and their networks. Die Makromolekulare Chemie, 1991, 192, 2401-2410.	1.1	58
333	Phase behavior and elastic properties of a slightly crosslinked liquid crystalline main-chain polymer. Colloid and Polymer Science, 1990, 268, 222-229.	1.0	35
334	Ferroelectric liquid crystalline polysiloxanes with high spontaneous polarization and possible applications in nonlinear optics. Advanced Materials, 1990, 2, 539-543.	11.1	86
335	Experimental proof of piezoelectricity in cholesteric and chiral smectic C*-phases of LC-elastomers. Die Makromolekulare Chemie Rapid Communications, 1990, 11, 593-598.	1.1	135
336	Liquid-crystalline elastomers with cholesteric and chiral smectic C* phases. Die Makromolekulare Chemie, 1989, 190, 2869-2884.	1.1	78
337	Ferroelectric modes in combined side-group main chain liquid-crystalline polymers. Die Makromolekulare Chemie Rapid Communications, 1989, 10, 333-338.	1.1	68
338	Liquid Crystalline Elastomers. Advanced Materials, 1989, 1, 321-329.	11.1	41
339	Liquid Crystalline Elastomers. Angewandte Chemie, 1989, 101, 1437-1445.	1.6	137
340	Liquid Crystalline Elastomers. Angewandte Chemie International Edition in English, 1989, 28, 1407-1415.	4.4	77
341	Combined liquid-crystalline polymers with chiral phases, 2. Lateral substituents. Die Makromolekulare Chemie, 1988, 189, 1793-1807.	1.1	70
342	X-ray investigations of linear and cross-linked liquid-crystalline main chain and combined polymers. Liquid Crystals, 1987, 2, 651-664.	0.9	67

#	Article	IF	CITATIONS
343	Stress-induced orientation in lightly crosslinked liquid-crystalline side-group polymers. Die Makromolekulare Chemie, 1987, 188, 665-674.	1.1	90
344	X-ray investigations of liquid crystalline homo- and copolysiloxanes with paired mesogens. Die Makromolekulare Chemie, 1987, 188, 1993-2000.	1.1	90
345	Title is missing!. Die Makromolekulare Chemie, 1986, 187, 1727-1736.	1.1	56
346	Title is missing!. Die Makromolekulare Chemie, 1986, 187, 1915-1926.	1.1	163
347	Shape variation of cross-linked liquid-crystalline polymers by electric fields. Liquid Crystals, 1986, 1, 589-592.	0.9	120
348	Dielectric relaxation of liquid crystalline polyacrylates and polymethacrylates. Macromolecules, 1985, 18, 960-965.	2.2	184
349	Liquid crystalline side chain polymers and their behaviour in the electric field. Die Makromolekulare Chemie, 1982, 183, 1245-1256.	1.1	106
350	Synthesis and phase behaviour of liquid crystalline polyacrylates. Die Makromolekulare Chemie, 1982, 183, 2311-2321.	1.1	312
351	Self-focusing of emission from thin film photonic crystals. , 0, , .		0
352	Towards Si-based photonic circuits: integrating photonic crystals in Si platforms. , 0, , .		0
353	Liquid Crystal Elastomer Micro-optics. , 0, , 346-368.		0
354	Suppression of electron trapping by quantum dot emitters using a grafted polystyrene shell. , 0, , .		0