Swapandeep S Chimni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2015323/publications.pdf

Version: 2024-02-01

123 papers

3,551 citations

32 h-index 55 g-index

162 all docs 162 docs citations

times ranked

162

3260 citing authors

#	Article	IF	CITATIONS
1	Biodegradation of azo dye C.I. Acid Red 88 by an anoxic–aerobic sequential bioreactor. Dyes and Pigments, 2006, 70, 1-7.	2.0	200
2	Decolorization of various azo dyes by bacterial consortium. Dyes and Pigments, 2005, 67, 55-61.	2.0	196
3	Organocatalytic asymmetric synthesis of 3-amino-2-oxindole derivatives bearing a tetra-substituted stereocenter. Tetrahedron: Asymmetry, 2013, 24, 343-356.	1.8	168
4	Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Research, 2005, 39, 5135-5141.	5. 3	155
5	Catalytic asymmetric synthesis of 3-hydroxyoxindole: a potentially bioactive molecule. RSC Advances, 2012, 2, 9748.	1.7	122
6	Asymmetric Organocatalytic Addition Reactions of Maleimides: A Promising Approach Towards the Synthesis of Chiral Succinimide Derivatives. Chemistry - an Asian Journal, 2013, 8, 328-346.	1.7	116
7	Small organic molecule catalyzed enantioselective direct aldol reaction in water. Tetrahedron: Asymmetry, 2006, 17, 2108-2119.	1.8	100
8	Protonated chiral prolinamide catalyzed enantioselective direct aldol reaction in water. Tetrahedron Letters, 2005, 46, 5617-5619.	0.7	96
9	Stereoselective synthesis of 3-amino-2-oxindoles from isatin imines: new scaffolds for bioactivity evaluation. RSC Advances, 2015, 5, 52481-52496.	1.7	92
10	Asymmetric Addition of Indoles to Isatins Catalysed by Bifunctional Modified Cinchona Alkaloid Catalysts. Chemistry - A European Journal, 2010, 16, 7709-7713.	1.7	86
11	Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach. Beilstein Journal of Organic Chemistry, 2012, 8, 2132-2141.	1.3	80
12	Protonated (S)-prolinamide derivativesâ€"water compatible organocatalysts for direct asymmetric aldol reaction. Tetrahedron: Asymmetry, 2008, 19, 2276-2284.	1.8	73
13	Asymmetric Organocatalytic Azaâ∈Friedelâ∈"Crafts Reaction of Naphthols with <i>N</i> â∈Sulfonyl Imines. European Journal of Organic Chemistry, 2011, 2011, 1636-1640.	1.2	72
14	Aromatic hydroxyl groupâ€"a hydrogen bonding activator in bifunctional asymmetric organocatalysis. RSC Advances, 2012, 2, 737-758.	1.7	72
15	Recent developments in the asymmetric hydrolytic ring opening of epoxides catalysed by microbial epoxide hydrolase. Tetrahedron: Asymmetry, 2010, 21, 2879-2898.	1.8	62
16	Recent advances in asymmetric organocatalytic conjugate addition of arenes and hetero-arenes. RSC Advances, 2012, 2, 6117.	1.7	60
17	Electron deficiency of aldehydes controls the pyrrolidine catalyzed direct cross-aldol reaction of aromatic/heterocyclic aldehydes and ketones in water. Tetrahedron, 2005, 61, 5019-5025.	1.0	53
18	Catalytic synthesis of 3-aminooxindoles <i>via</i> addition to isatin imine: an update. Organic and Biomolecular Chemistry, 2018, 16, 3328-3347.	1.5	51

#	Article	IF	CITATIONS
19	Organocatalyzed direct asymmetric aldol reaction of isatins in water: low catalyst loading in command. Tetrahedron, 2013, 69, 5197-5204.	1.0	50
20	Isolation and characterization of microorganisms capable of decolorizing various triphenylmethane dyes. Journal of Basic Microbiology, 2004, 44, 59-65.	1.8	49
21	Organocatalytic enantioselective aza-Henry reaction of ketimines derived from isatins: access to optically active 3-amino-2-oxindoles. RSC Advances, 2014, 4, 24816-24819.	1.7	41
22	Asymmetric syn-selective direct aldol reaction of protected hydroxyacetone catalyzed by primary amino acid derived bifunctional organocatalyst in the presence of water. Organic and Biomolecular Chemistry, 2011, 9, 2731.	1.5	39
23	DFT investigation on nonlinear optical (NLO) properties of novel borazine derivatives. Computational and Theoretical Chemistry, 2016, 1086, 58-66.	1.1	39
24	The pH of the reaction controls the stereoselectivity of organocatalyzed direct aldol reactions in water. Tetrahedron: Asymmetry, 2009, 20, 1722-1724.	1.8	37
25	Cinchona-derived thiourea catalyzed hydrophosphonylation of ketimines—an enantioselective synthesis of α-amino phosphonates. Tetrahedron, 2014, 70, 7044-7049.	1.0	37
26	Biological treatment of textile dye Acid violet-17 by bacterial consortium in an up-flow immobilized cell bioreactor. Letters in Applied Microbiology, 2004, 38, 345-350.	1.0	36
27	Purification and properties of a novel extra-cellular thermotolerant metallolipase of Bacillus coagulans MTCC-6375 isolate. Protein Expression and Purification, 2006, 46, 421-428.	0.6	36
28	Facile Construction of Vicinal Quaternary and Tertiary Stereocenters ⟨i⟩via⟨ i⟩ Regio―and Stereoselective Organocatalytic Michael Addition to Nitrodienes. Advanced Synthesis and Catalysis, 2011, 353, 3203-3212.	2.1	36
29	Organocatalytic enantioselective aza-Friedel–Crafts reaction of sesamols with N-sulfonylimines catalyzed by 6′-OH Cinchona alkaloids. Tetrahedron Letters, 2013, 54, 4613-4616.	0.7	35
30	Organocatalytic Asymmetric Direct Aldol Reaction of Pyruvic Aldehyde Dimethyl Acetal with Isatin Derivatives. European Journal of Organic Chemistry, 2013, 2013, 4780-4786.	1.2	35
31	Novel indium-mediated ternary reactions between indole-3-carboxaldehydes–allyl bromide–enamines: facile synthesis of bisindolyl- and indolyl-heterocyclic alkanes. Tetrahedron Letters, 2003, 44, 2101-2104.	0.7	34
32	Synthesis of \hat{i}^2 -adrenergic blockers (R)-(\hat{a}°)-nifenalol and (S)-(+)-sotalol via a highly efficient resolution of a bromohydrin precursor. Tetrahedron: Asymmetry, 2005, 16, 717-725.	1.8	34
33	$\hat{l}_{\pm}, \hat{l}_{\pm}$ -Dicyanoolefins: versatile substrates in organocatalytic asymmetric transformations. Organic and Biomolecular Chemistry, 2016, 14, 7832-7847.	1.5	34
34	Recent Developments on Thiourea Based Anticancer Chemotherapeutics. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 163-175.	0.9	34
35	Organocatalytic asymmetric Friedel–Crafts reaction of 1-naphthols with isatins: an enantioselective synthesis of 3-aryl-3-hydroxy-2-oxindoles. Tetrahedron Letters, 2014, 55, 2138-2141.	0.7	33
36	Chiral Squaramideâ€Catalyzed Enantioselective Decarboxylative Addition of βâ€Keto Acids to Isatin Imines. Advanced Synthesis and Catalysis, 2017, 359, 1725-1734.	2.1	33

#	Article	IF	Citations
37	Thiourea catalyzed aminolysis of epoxides under solvent free conditions. Electronic control of regioselective ring opening. Tetrahedron, 2010, 66, 3042-3049.	1.0	32
38	Novel bisstyryl derivatives of bakuchiol: Targeting oral cavity pathogens. European Journal of Medicinal Chemistry, 2010, 45, 3125-3134.	2.6	32
39	Catalyst-Controlled Structural Divergence: Selective Intramolecular 7- <i>endo</i> - <i>dig</i> and 6- <i>exo</i> - <i>dig</i> Post-Ugi Cyclization for the Synthesis of Benzoxazepinones and Benzoxazinones. Journal of Organic Chemistry, 2018, 83, 57-68.	1.7	32
40	Bacillus alcalophilus MTCC10234 catalyzed enantioselective kinetic resolution of aryl glycidyl ethers. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 128-134.	1.8	30
41	Chemoenzymatic synthesis of optically active heterocyclic homoallylic and homopropargylic alcohols. Tetrahedron: Asymmetry, 2002, 13, 2679-2687.	1.8	28
42	Phenanthridine-Fused Tetracyclic Ring System: Metal-Free Diastereoselective Modular Construction of Highly Constrained Polyheterocycles via Post-Ugi Tandem Modifications. Organic Letters, 2019, 21, 6726-6730.	2.4	28
43	Grindingâ€Assisted Asymmetric Organocatalysis: A Solventâ€free Approach to the Formation of Vicinal Quaternary and Tertiary Stereocenters. Asian Journal of Organic Chemistry, 2012, 1, 138-141.	1.3	27
44	Organocatalytic Asymmetric Friedel–Crafts Reaction of Sesamol with Isatins: Access to Biologically Relevant 3â€Arylâ€3â€hydroxyâ€2â€oxindoles. Chemistry - an Asian Journal, 2014, 9, 1305-1310.	1.7	27
45	Recent Advances in Iodine Monochloride Mediated Electrophilic Cyclizations. Synthesis, 2015, 47, 1961-1989.	1.2	27
46	Methods for inhibition of residual lipase activity in colorimetric assay: a comparative study. Indian Journal of Biochemistry and Biophysics, 2005, 42, 233-7.	0.2	27
47	Effect of Solvents and Kinetic Parameters on Synthesis of Ethyl Propionate Catalysed by Poly (AAc-co-HPMA-cl-MBAm)-Matrix-Immobilized Lipase of Pseudomonas aeruginosa BTS-2 World Journal of Microbiology and Biotechnology, 2005, 21, 1037-1044.	1.7	26
48	Acid catalysed enamine induced transformations of 1,3-dimethyl-5-formyluracil. A unique annulation reaction with enaminones. Tetrahedron, 1995, 51, 12775-12780.	1.0	25
49	Maleimide as an efficient nucleophilic partner in the aza-Morita–Baylis–Hillman reaction: synthesis of chiral 3-substituted-3-aminooxindoles. Organic and Biomolecular Chemistry, 2015, 13, 5629-5635.	1.5	24
50	The formation of novel 1,3-dioxolanes: atypical Baylisâ€"Hillman reaction of a sesquiterpene lactone parthenin. Tetrahedron Letters, 2007, 48, 955-960.	0.7	23
51	Shortâ€chain ester synthesis by transesterification employing poly (MAcâ€ <i>co</i> â€DMAâ€ <i>cl</i> â€MBAm) hydrogelâ€bound lipase of <i>Bacillus coagulans</i> MTCCâ€6375. Journal of Applied Polymer Science, 2008, 109, 1063-1071.	1.3	22
52	Kinetic resolution of 1-chloro-3-(1-naphthyloxy)-2-propanol, an intermediate in the synthesis of \hat{l}^2 -adrenergic receptor blockers. Bioorganic Chemistry, 2003, 31, 259-269.	2.0	21
53	Recent advances in the catalytic synthesis of 3-aminooxindoles: an update. Organic and Biomolecular Chemistry, 2020, 18, 4692-4708.	1.5	21
54	Properties of poly(AAc-co-HPMA-cl-EGDMA) hydrogel-bound lipase ofPseudomonas aeruginosa MTCC-4713 and its use in synthesis of methyl acrylate. Journal of Applied Polymer Science, 2007, 104, 183-191.	1.3	20

#	Article	IF	Citations
55	Grinding assisted, column chromatography free decarboxylative carbon-carbon bond formation: Greener synthesis of 3, 3-disubstituted oxindoles. Tetrahedron, 2017, 73, 802-808.	1.0	20
56	Biodegradation of acid blue-15, a textile dye, by an up-flow immobilized cell bioreactor. Journal of Industrial Microbiology and Biotechnology, 2004, 31, 109-114.	1.4	19
57	Allyl tetrahydropyranyl ether: a versatile alcohol/thiol protecting reagent. Tetrahedron Letters, 2009, 50, 6236-6240.	0.7	19
58	Trigger factor assisted folding of the recombinant epoxide hydrolases identified from C. pelagibacter and S. nassauensis. Protein Expression and Purification, 2014, 104, 71-84.	0.6	19
59	Humicola lanuginosa lipase-catalyzed enantioselective resolution of \hat{l}^2 -hydroxy sulfides: versatile synthons for enantiopure \hat{l}^2 -hydroxy sulfoxides. Tetrahedron: Asymmetry, 2001, 12, 2457-2462.	1.8	18
60	A simple one-step protocol for the olefination of vinylogous formamides. Tetrahedron Letters, 2004, 45, 3409-3412.	0.7	18
61	Organocatalytic Enantioselective Morita–Baylis–Hillman Reaction of Maleimides with Isatins. Asian Journal of Organic Chemistry, 2013, 2, 586-592.	1.3	17
62	Primary-tertiary diamine-catalyzed Michael addition of ketones to isatylidenemalononitrile derivatives. Beilstein Journal of Organic Chemistry, 2014, 10, 929-935.	1.3	17
63	Chiral amine catalyzed enantio- and diastereoselective Michael reaction in brine. Tetrahedron: Asymmetry, 2012, 23, 1068-1079.	1.8	16
64	Cinchonidine thiourea catalyzed asymmetric addition of phenols to oxindole derivatives. RSC Advances, 2014, 4, 62367-62374.	1.7	16
65	Bioreduction of a carbon–nitrogen double bond using immobilized baker's yeast'a first report. World Journal of Microbiology and Biotechnology, 1998, 14, 247-250.	1.7	15
66	2,4â€Dinitrophenolâ€Catalyzed αâ€C(sp ³)â^'H and C(sp)â^'H Bond Functionalization of Cyclic Amir and Alkynes: Highly Regioâ€∤Diastereoselective Synthesis of αâ€Alkynylâ€3â€Aminoâ€2â€Oxindoles. Chemistry European Journal, 2016, 22, 9948-9952.	nes - A1. 7	15
67	Chiral Squaramide Catalyzed Enantioselective 1,6â€Michael Addition of Pyrazolinâ€5â€ones to Styrylisoxazole Derivatives. European Journal of Organic Chemistry, 2018, 2018, 3489-3495.	1.2	15
68	Novel indium-mediated deoxygenative $\hat{l}_{\pm},\hat{l}_{\pm}$ -diallylation of indole- and pyrrole-3-carboxaldehydes. Tetrahedron Letters, 2002, 43, 8029-8031.	0.7	14
69	Biotreatment of Simulated Textile Dye Effluent Containing Malachite Green by an Up-Flow Immobilized Cell Bioreactor. World Journal of Microbiology and Biotechnology, 2004, 20, 431-434.	1.7	14
70	Characteristics of poly(AAc5-co-HPMA3-cl-EGDMA15) hydrogel-immobilized lipase ofPseudomonas aeruginosa MTCC-4713. Journal of Applied Polymer Science, 2006, 100, 4636-4644.	1.3	14
71	Kinetic resolution of heteroaryl \hat{l}^2 -hydroxy sulfides catalyzed by Humicola lanuginosa lipase. Tetrahedron: Asymmetry, 2002, 13, 511-517.	1.8	13
72	Arenesulfonyl indole: new precursor for diversification of C-3 functionalized indoles. RSC Advances, 2021, 11, 2126-2140.	1.7	13

#	Article	IF	CITATIONS
73	The Efficient Allylations of 2-Oxocarboxylic Acids. Synthesis of 2-Allyl Derivatives of 2-Hydroxycarboxylic Acids. Synlett, 2002, 2002, 0573-0574.	1.0	12
74	Enhancement of Ethyl Propionate Synthesis by poly (AAc-co-HPMA-cl-MBAm)-immobilized Pseudomonas aeruginosa MTCC-4713, Exposed to Hg2+and NH4+Ions. Acta Microbiologica Et Immunologica Hungarica, 2006, 53, 195-207.	0.4	12
75	Design of Peptidyl Thiourea Derivatives as Organocatalysts for the Asymmetric Ring Opening of <i>meso</i> å€Stilbene Oxides. Asian Journal of Organic Chemistry, 2014, 3, 700-705.	1.3	12
76	Journey Heading towards Enantioselective Synthesis Assisted by Organocatalysis. Chemical Record, 2018, 18, 137-153.	2.9	12
77	Methacrylic acid and dodecyl methacrylate (MAc-DMA) hydrogel for enhanced catalytic activity of lipase ofBacillus coagulans MTCC-6375. Journal of Applied Polymer Science, 2006, 100, 1420-1426.	1.3	11
78	An expedient chemo-enzymatic method for the synthesis of optically active masked $1,2$ -amino alcohols. Tetrahedron: Asymmetry, 2008, 19, 1898-1903.	1.8	10
79	Organocatalytic enantioselective synthesis of C3 functionalized indole derivatives. Tetrahedron, 2016, 72, 8042-8049.	1.0	10
80	Highly enantioselective kinetic resolution of trans-2-(phenylthio)cyclohexanol derivatives by immobilized Candida antartica B lipase. Journal of Molecular Catalysis B: Enzymatic, 2013, 96, 67-74.	1.8	9
81	Organocatalytic enantioselective synthesis of N-alkyl/aryl-3-alkyl-pyrrolidine-2,5-dione in brine. Tetrahedron: Asymmetry, 2016, 27, 1145-1152.	1.8	9
82	Organocatalytic enantioselective conjugate addition of pyrazolin-5-ones to arylomethylidene malonates. Organic and Biomolecular Chemistry, 2019, 17, 9514-9523.	1.5	9
83	Catalystâ€Free Synthesis of 3â€Arylâ€3â€hydroxyâ€2â€oxindole Derivatives by Using Water as the Solvent: Experimental and DFT Studies. Asian Journal of Organic Chemistry, 2016, 5, 1334-1344.	1.3	8
84	Enantioselective 1,4-Michael addition reaction of pyrazolin-5-one derivatives with 2-enoylpyridines catalyzed by <i>Cinchona</i> derived squaramides. Organic and Biomolecular Chemistry, 2018, 16, 6470-6478.	1.5	8
85	Toxic effects of purified phenolic compounds from Acacia nilotica against common cutworm. Toxicon, 2021, 203, 22-29.	0.8	8
86	Enamine-induced Ring Transformations of 6-Substituted 5-Formyl-1,3-dimethyluracilsâ€. Journal of Chemical Research Synopses, 1998, , 352-353.	0.3	7
87	A highly diastereoselective synthesis of homoallylic alcohol/amine appended uracils: the role of the uracil C-4 carbonyl in diastereoselectivity control. Tetrahedron Letters, 2001, 42, 5073-5075.	0.7	7
88	Diastereoselective Synthesis of 1-Allyl and 1,2-bis(Allyl)-1,2-diols: Versatile Synthons For Substituted Tetrahydrofuran Derivatives. Synlett, 2001, 2001, 1431-1433.	1.0	7
89	Bioresolution of benzyl glycidyl ether using whole cells of <i>Bacillus alcalophilus</i> Basic Microbiology, 2012, 52, 383-389.	1.8	7
90	Geometrical structure and nonlinear response variations of metal (M = Ni2+, Pd2+, Pt2+) octaphyrin complex derivatives: A DFT study. Journal of Coordination Chemistry, 2017, 70, 1221-1236.	0.8	7

#	Article	IF	CITATIONS
91	Odoriferous Cyclic Ethersvia Co-Halogenation Reaction: Facile Preparation of Nerol Oxide,Florol®,Florol® Methyl Ether, andPityol® Methyl Ether. Helvetica Chimica Acta, 2007, 90, 196-204.	1.0	6
92	Organocatalytic Asymmetric Decarboxylative Addition of βâ€Ketoacids to Methyleneindolinones Derivatives. European Journal of Organic Chemistry, 2018, 2018, 4081-4088.	1.2	6
93	Stereoselective Organocatalytic Synthesis of γ,γ―Disubstituted Butenolides. ChemistrySelect, 2018, 3, 5348-5352.	0.7	6
94	Umpolung of reactivity at the C-5 position of uracil: 1,2 facile nucleophilic reactions of thiolate ions at C-5 of 6-cyano-1,3-dimethyluracil to procure 5-alkyl or 5-aryl-thio-1,3-dimethyluracils. Journal of the Chemical Society Perkin Transactions 1, 1992, , 449.	0.9	5
95	Heterocyclic transformations. Part 7. Unprecedented transformations of 1,3-dialkyl-5-formyluracils to 1,3-dialkyl-7-hydroxyquinazolines. Journal of the Chemical Society Perkin Transactions 1, 1995, , 2363.	0.9	5
96	Kinetic Resolution of \hat{l}^2 - and \hat{l}^3 -Hydroxy Sulfides by Fungal Lipase from Humicola lanuginosa. Enantiomer, 2002, 7, 231-240.	0.5	5
97	Purification of a Moderate ThermotolerantBacillus coagulansBTS1 Lipase and its Properties in a Hydro-gel System. Acta Microbiologica Et Immunologica Hungarica, 2006, 53, 77-87.	0.4	5
98	Binding and selectivity of phenazino-18-crown-6-ether with alkali, alkaline earth and toxic metal species: A DFT study. Journal of Molecular Structure, 2017, 1130, 781-790.	1.8	5
99	Bioresolution of racemic phenyl glycidyl ether by a putative recombinant epoxide hydrolase from Streptomyces griseus NBRC 13350. World Journal of Microbiology and Biotechnology, 2017, 33, 82.	1.7	5
100	'Umpolung' of Reactivity at C-5 Position of Uracil: An Unprecedented Nucleophilic Reaction of Thiolane Ion at C-5 of 6-Cyano-1,3-dimethyluracil. Heterocycles, 1988, 27, 2523.	0.4	5
101	Phase Transfer Catalysed Oxidative Arylthiolation of 1,3,6-Trimethyluracil and Its 5-Bromo Derivative. Heterocycles, 1992, 34, 425.	0.4	5
102	Heterocyclic transformations. Part 3. Thiolate ion-induced transformations of 6-methyl-1,3-oxazine-2,4(3H)-diones to 3-(alkyl/arylthio)but-2-enamides. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1391.	0.9	4
103	Reactions of diazines with nucleophilesâ€"IV1. the reactivity of 5-bromo-1,3,6-trimethyluracil with thiolate ionsâ€"substitution versus X-philic versus single electron transfer reactions. Bioorganic and Medicinal Chemistry, 1995, 3, 891-897.	1.4	4
104	Indium-Mediated Barbier allylations of Hydroxyanthraquinones: An Expedient synthesis of Novel 10-Alkenyl-10-Hydroxy-9(10H)-Anthracenones. Journal of Chemical Research, 2000, 2000, 314-315.	0.6	4
105	Enantioselective resolution of 3-phenylthio-2-propanol with Humicola lanuginosa lipase. Biotechnology Letters, 2000, 22, 1237-1241.	1.1	3
106	Synthesis of ethyl propionate catalyzed by poly(N-AEAAm-co-AAc)-cl-MBAm hydrogel-immobilized lipase ofBacillus coagulans MTCC-6375. Journal of Applied Polymer Science, 2007, 105, 1437-1443.	1.3	3
107	<i>Candida antarctica</i> lipaseâ€Bâ€catalyzed kinetic resolution of 1,3â€dialkylâ€3â€hydroxymethyl oxindoles. Chirality, 2020, 32, 1377-1394.	1.3	3
108	Acid catalysed reactions of 5-formyluracils with enamines. A facile synthesis of 5-acylvinyluracils. Tetrahedron, 1998, 54, 7563-7572.	1.0	2

#	ARTICLE	IF	Citations
109	Catalytic potential of a poly(AAc-co-HPMA-cl MBAm)-matrix-immobilized lipase from a thermotolerantPseudomonas aeruginosa MTCC-4713. Journal of Applied Polymer Science, 2006, 100, 4252-4259.	1.3	2
110	Pseudomonas gessardii growing cells as a new biocatalyst for asymmetric synthesis of α-bromohydrins. Biocatalysis and Agricultural Biotechnology, 2015, 4, 49-54.	1.5	2
111	Spectral and optoelectronic studies on 7,12,17-trioxa and 7,12,17-trithia [11] helicenes: a DFT view. Indian Journal of Physics, 2017, 91, 915-924.	0.9	2
112	Stereoselective Mannich Reaction of αâ€Acetoxyâ€Î²â€keto esters with Isatin imine: An Efficient Access to Vicinal Tetraâ€substituted Stereocenters. European Journal of Organic Chemistry, 2021, 2021, 5193.	1.2	2
113	Synthesis and Stereochemistry-Activity Relationship of Chiral Thiourea Derivatives as Potential Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 910-920.	0.9	2
114	Low catalyst loading enabled organocatalytic synthesis of chiral bis-heterocyclic frameworks containing pyrazole and isoxazole. Organic and Biomolecular Chemistry, 2021, 19, 9910-9924.	1.5	2
115	First Chemoenzymatic Synthesis of Optically Active Uracil and Chromen-4-one Substituted Homoallylic Alcohols: An Entry into Chiral Pool. Synlett, 2002, 2002, 1277-1280.	1.0	1
116	Enantiocomplementary reduction of 3-phenylthiopropan-2-one by Bacillus sp.: Effect of medium components. Bioresource Technology, 2007, 98, 725-728.	4.8	1
117	Experimental and DFT Studies of Organocatalytic Microwaveâ€Assisted Reaction of Isatin Derivatives with Dinitrotoluenes. Asian Journal of Organic Chemistry, 2017, 6, 575-582.	1.3	1
118	Facile Synthesis of 5-(Substituted vinyl)-uracil Derivatives through Knoevenagel and Stobbe type Condensations of 5-Formyluracils. Journal of Chemical Research Synopses, 1998, , 544-545.	0.3	0
119	Novel Indium-Mediated Deoxygenative $\hat{l}_{\pm},\hat{l}_{\pm}$ -Diallylation of Indole- and Pyrrole-3-carboxaldehydes ChemInform, 2003, 34, no.	0.1	0
120	Chemoenzymatic Synthesis of Optically Active Heterocyclic Homoallylic and Homopropargylic Alcohols ChemInform, 2003, 34, no.	0.1	0
121	Novel Indium-Mediated Ternary Reactions Between Indole-3-carboxaldehydesâ€"Allyl Bromideâ€"Enamines: Facile Synthesis of Bisindolyl- and Indolyl-Heterocyclic Alkanes ChemInform, 2003, 34, no.	0.1	0
122	A Simple One-Step Protocol for the Olefination of Vinylogous Formamides ChemInform, 2004, 35, no.	0.1	0
123	Electron Deficiency of Aldehydes Controls the Pyrrolidine Catalyzed Direct Cross-Aldol Reaction of Aromatic/Heterocyclic Aldehydes and Ketones in Water ChemInform, 2005, 36, no.	0.1	0