Shawn K Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2015311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Visibleâ€Lightâ€Mediated Synthesis of Carbazoles. Angewandte Chemie - International Edition, 2013, 52, 12696-12700.	13.8	193
2	Heteroleptic Cu-Based Sensitizers in Photoredox Catalysis. Accounts of Chemical Research, 2016, 49, 1557-1565.	15.6	193
3	Enantioselective Synthesis of [7]Helicene: Dramatic Effects of Olefin Additives and Aromatic Solvents in Asymmetric Olefin Metathesis. Chemistry - A European Journal, 2008, 14, 9323-9329.	3.3	162
4	Unlocking the potential of thiaheterohelicenes: chemical synthesis as the key. Organic and Biomolecular Chemistry, 2006, 4, 2518.	2.8	153
5	Preparation of Helicenes through Olefin Metathesis. Angewandte Chemie - International Edition, 2006, 45, 2923-2926.	13.8	140
6	Heteroleptic Copper(I)â€Based Complexes for Photocatalysis: Combinatorial Assembly, Discovery, and Optimization. Angewandte Chemie - International Edition, 2018, 57, 5477-5481.	13.8	138
7	Toward a Visible Light Mediated Photocyclization: Cu-Based Sensitizers for the Synthesis of [5]Helicene. Organic Letters, 2012, 14, 2988-2991.	4.6	114
8	A Highly Active Chiral Ruthenium-Based Catalyst for Enantioselective Olefin Metathesis. Organometallics, 2007, 26, 2945-2949.	2.3	81
9	Synthesis, Crystal Structure and Photophysical Properties of Pyrene–Helicene Hybrids. Chemistry - A European Journal, 2013, 19, 16295-16302.	3.3	80
10	Photochemical Synthesis of Carbazoles Using an [Fe(phen) ₃](NTf ₂) ₂ /O ₂ Catalyst System: Catalysis toward Sustainability. Organic Letters, 2016, 18, 4994-4997.	4.6	79
11	Phase Separation As a Strategy Toward Controlling Dilution Effects in Macrocyclic Glaser-Hay Couplings. Journal of the American Chemical Society, 2011, 133, 19976-19981.	13.7	76
12	Desymmetrizations Forming Tetrasubstituted Olefins Using Enantioselective Olefin Metathesis. Organic Letters, 2010, 12, 2032-2035.	4.6	63
13	Bifunctional Copper-Based Photocatalyst for Reductive Pinacol-Type Couplings. ACS Catalysis, 2019, 9, 9458-9464.	11.2	60
14	Photochemical Dual atalytic Synthesis of Alkynyl Sulfides. Angewandte Chemie - International Edition, 2017, 56, 12255-12259.	13.8	58
15	Exploitation of Perfluorophenyl–Phenyl Interactions for Achieving Difficult Macrocyclizations by Using Ring-Closing Metathesis. Angewandte Chemie - International Edition, 2006, 45, 968-973.	13.8	57
16	Mechanistically Inspired Catalysts for Enantioselective Desymmetrizations by Olefin Metathesis. Chemistry - A European Journal, 2008, 14, 8690-8695.	3.3	56
17	Biocatalytic synthesis of planar chiral macrocycles. Science, 2020, 367, 917-921.	12.6	55
18	Photochemical Cobalt-Catalyzed Hydroalkynylation To Form 1,3-Enynes. ACS Catalysis, 2019, 9, 3213-3218.	11.2	52

SHAWN K COLLINS

#	Article	IF	CITATIONS
19	Efficient Macrocyclization Achieved via Conformational Control Using Intermolecular Noncovalent ï€-Cation/Arene Interactions. Journal of the American Chemical Society, 2010, 132, 12790-12791.	13.7	50
20	Photochemical intramolecular amination for the synthesis of heterocycles. Green Chemistry, 2017, 19, 4798-4803.	9.0	42
21	Photochemical Synthesis of Complex Carbazoles: Evaluation of Electronic Effects in Both UV―and Visible‣ight Methods in Continuous Flow. Chemistry - A European Journal, 2015, 21, 16673-16678.	3.3	38
22	Heteroleptic Copper-Based Complexes for Energy-Transfer Processes: <i>E</i> → <i>Z</i> Isomerization and Tandem Photocatalytic Sequences. ACS Catalysis, 2021, 11, 8829-8836.	11.2	34
23	Development of Perfluoroareneâ^'Arene Interactions for Macrocyclic En-yne Metathesis and the Total Synthesis of Macrocyclic Natural Products. Journal of Organic Chemistry, 2007, 72, 6397-6408.	3.2	31
24	Preparation of cyclic molecules bearing "strained―olefins using olefin metathesis. Journal of Organometallic Chemistry, 2006, 691, 5122-5128.	1.8	30
25	Microwave accelerated Glaser–Hay macrocyclizations at high concentrations. Chemical Communications, 2012, 48, 6420.	4.1	30
26	Synthesis of <i>C</i> ₁ ‣ymmetric BINOLs Employing Nâ€Heterocyclic Carbene–Copper Complexes. Chemistry - A European Journal, 2009, 15, 9655-9659.	3.3	27
27	Advanced Strategies for Efficient Macrocyclic Cu(I)-Catalyzed Cycloaddition of Azides. Organic Letters, 2014, 16, 5286-5289.	4.6	27
28	Direct Macrolactonization of Seco Acids via Hafnium(IV) Catalysis. ACS Catalysis, 2015, 5, 1462-1467.	11.2	27
29	Heterocoupling of 2-naphthols enabled by a copper–N-heterocyclic carbene complex. Chemical Communications, 2013, 49, 1835.	4.1	26
30	Continuous flow macrocyclization at high concentrations: synthesis of macrocyclic lipids. Green Chemistry, 2013, 15, 1962.	9.0	25
31	Heteroleptic Copper(I)â€Based Complexes for Photocatalysis: Combinatorial Assembly, Discovery, and Optimization. Angewandte Chemie, 2018, 130, 5575-5579.	2.0	25
32	Synthesis of a Carprofen Analogue Using a Continuous Flow UV-Reactor. Organic Process Research and Development, 2014, 18, 1571-1574.	2.7	24
33	Synthesis of a Renewable Macrocyclic Musk: Evaluation of Batch, Microwave, and Continuous Flow Strategies. Organic Process Research and Development, 2019, 23, 283-287.	2.7	24
34	Exploiting Quadrupolar Interactions in the Synthesis of the Macrocyclic Portion of Longithorone C. Organic Letters, 2008, 10, 2927-2930.	4.6	23
35	Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol–Ene Reaction Using Visible Light. Journal of Chemical Education, 2018, 95, 1073-1077.	2.3	19
36	Catalytic Macrocyclization Strategies Using Continuous Flow: Formal Total Synthesis of Ivorenolide A. Journal of Organic Chemistry, 2016, 81, 6750-6756.	3.2	17

SHAWN K COLLINS

#	Article	IF	CITATIONS
37	General Cu-Catalyzed Csp–S Coupling. Organic Letters, 2020, 22, 5905-5909.	4.6	17
38	Direct synthesis of macrodiolides via hafnium(<scp>iv</scp>) catalysis. Chemical Communications, 2015, 51, 10471-10474.	4.1	16
39	A synthetic guide to alkynyl sulfides. Organic and Biomolecular Chemistry, 2020, 18, 4885-4893.	2.8	16
40	Introduction of axial chirality in a planar aromatic ligand results in chiral recognition with DNA. Journal of Molecular Recognition, 2011, 24, 288-294.	2.1	15
41	Photochemical Dual atalytic Synthesis of Alkynyl Sulfides. Angewandte Chemie, 2017, 129, 12423-12427.	2.0	15
42	Phase Separation Macrocyclization in a Complex Pharmaceutical Setting: Application toward the Synthesis of Vaniprevir. Journal of Organic Chemistry, 2017, 82, 7576-7582.	3.2	15
43	Exploiting Photochemical Processes in Multiâ€Step Continuous Flow: Derivatization of the Natural Product Clausine C. ChemPhotoChem, 2018, 2, 855-859.	3.0	15
44	Photocatalyic Appel reaction enabled by copper-based complexes in continuous flow. Beilstein Journal of Organic Chemistry, 2018, 14, 2730-2736.	2.2	14
45	Development of quadrupolar engaging auxiliaries as novel gearing elements for macrocyclization. Pure and Applied Chemistry, 2006, 78, 783-789.	1.9	12
46	Influence of Poly(ethylene glycol) Structure in Catalytic Macrocyclization Reactions. ACS Catalysis, 2013, 3, 773-782.	11.2	12
47	Continuous Flow Science in an Undergraduate Teaching Laboratory: Bleach-Mediated Oxidation in a Biphasic System. Journal of Chemical Education, 2018, 95, 1069-1072.	2.3	12
48	Exploiting Aggregation To Achieve Phase Separation in Macrocyclization. Chemistry - A European Journal, 2013, 19, 2108-2113.	3.3	11
49	Total Synthesis of Neomarchantin A: Key Bond Constructions Performed Using Continuous Flow Methods. Organic Letters, 2017, 19, 2889-2892.	4.6	10
50	Efficient continuous-flow synthesis of macrocyclic triazoles. Journal of Flow Chemistry, 2015, 5, 142-144.	1.9	8
51	Synthesis and Diversification of Macrocyclic Alkynediyl Sulfide Peptides. Chemistry - A European Journal, 2020, 26, 14575-14579.	3.3	8
52	Evaluating heteroleptic copper(I)-based complexes bearing <i>ï€</i> -extended diimines in different photocatalytic processes. Canadian Journal of Chemistry, 2020, 98, 461-465.	1.1	7
53	Macrocyclic Olefin Metathesis at High Concentrations by Using a Phase eparation Strategy. Chemistry - A European Journal, 2014, 20, 12763-12767.	3.3	6
54	Decomposition of lignin models enabled by copper-based photocatalysis under biphasic conditions. Green Chemistry, 2022, 24, 4414-4419.	9.0	4

SHAWN K COLLINS

#	Article	IF	CITATIONS
55	Synthesis of Chiral C 1-Symmetric N-Heterocyclic Carbene Ligands: Application toward Copper-Catalyzed Homocoupling of 2-Naphthols. Synthesis, 2014, 46, 375-380.	2.3	3
56	Heteroleptic Copper(I)-Based Complexes Incorporating BINAP and π-Extended Diimines: Synthesis, Catalysis and Biological Applications. Molecules, 2022, 27, 3745.	3.8	3
57	Computational Insight into Cu-Catalyzed C _{sp} –S Coupling to Form a Macrocyclic Alkynyl Sulfide. Journal of Organic Chemistry, 2021, 86, 5120-5128.	3.2	2
58	Implementing flow chemistry in education: the NSERC CREATE program in continuous flow science. Journal of Flow Chemistry, 2021, 11, 13-17.	1.9	1