Khalil Amine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2015229/publications.pdf

Version: 2024-02-01

435 papers 56,344 citations

124 h-index 221 g-index

456 all docs

456 docs citations

456 times ranked

28443 citing authors

#	Article	IF	CITATIONS
1	30 Years of Lithium″on Batteries. Advanced Materials, 2018, 30, e1800561.	21.0	3,039
2	Challenges Facing Lithium Batteries and Electrical Doubleâ€Layer Capacitors. Angewandte Chemie - International Edition, 2012, 51, 9994-10024.	13.8	2,407
3	High-energy cathode material for long-life and safe lithium batteries. Nature Materials, 2009, 8, 320-324.	27.5	1,323
4	Aprotic and Aqueous Li–O ₂ Batteries. Chemical Reviews, 2014, 114, 5611-5640.	47.7	975
5	Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13, 715-722.	31.5	964
6	Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials, 2012, 11, 942-947.	27.5	921
7	Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019, 9, 1900161.	19.5	865
8	Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries. ACS Nano, 2013, 7, 760-767.	14.6	772
9	A lithium–oxygen battery based on lithium superoxide. Nature, 2016, 529, 377-382.	27.8	633
10	The Role of AlF ₃ Coatings in Improving Electrochemical Cycling of Liâ€Enriched Nickelâ€Manganese Oxide Electrodes for Liâ€Ion Batteries. Advanced Materials, 2012, 24, 1192-1196.	21.0	629
11	Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes – a critical review. Energy and Environmental Science, 2018, 11, 243-257.	30.8	618
12	The role of nanotechnology in the development of battery materials for electric vehicles. Nature Nanotechnology, 2016, 11, 1031-1038.	31.5	581
13	Role of surface coating on cathode materials for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7606.	6.7	569
14	A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium–Sulfur as a Positive Electrode. Journal of the American Chemical Society, 2012, 134, 4505-4508.	13.7	534
15	High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 35-53.	25.5	514
16	Understanding the Rate Capability of Highâ€Energyâ€Density Liâ€Rich Layered Li _{1.2} Ni _{0.15} Co _{0.1} Mn _{0.55} O ₂ Cathode Materials. Advanced Energy Materials, 2014, 4, 1300950.	19.5	480
17	Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy and Environmental Science, 2013, 6, 1806.	30.8	462
18	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.	38.1	461

#	Article	IF	Citations
19	Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1075-1101.	30.8	459
20	Titaniumâ€Based Anode Materials for Safe Lithiumâ€Ion Batteries. Advanced Functional Materials, 2013, 23, 959-969.	14.9	456
21	Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule, 2018, 2, 2047-2064.	24.0	442
22	Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy and Environmental Science, 2011, 4, 1345.	30.8	433
23	Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries. Nano Letters, 2014, 14, 416-422.	9.1	422
24	Bridging the academic and industrial metrics for next-generation practical batteries. Nature Nanotechnology, 2019, 14, 200-207.	31.5	420
25	Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2with the Microscale Coreâ^'Shell Structure as the Positive Electrode Material for Lithium Batteries. Journal of the American Chemical Society, 2005, 127, 13411-13418.	13.7	417
26	Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems. Nature Communications, 2013, 4, 2437.	12.8	409
27	Progress in Mechanistic Understanding and Characterization Techniques of Liâ€5 Batteries. Advanced Energy Materials, 2015, 5, 1500408.	19.5	400
28	A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nature Nanotechnology, 2021, 16, 166-173.	31.5	392
29	Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries. Nano Letters, 2013, 13, 4642-4649.	9.1	385
30	A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nature Communications, 2013, 4, 2383.	12.8	379
31	In situ quantification of interphasial chemistry in Li-ion battery. Nature Nanotechnology, 2019, 14, 50-56.	31.5	373
32	Nanostructured Anode Material for Highâ€Power Battery System in Electric Vehicles. Advanced Materials, 2010, 22, 3052-3057.	21.0	359
33	Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–SÂbatteries. Nature Energy, 2017, 2, .	39.5	349
34	Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nature Energy, 2019, 4, 484-494.	39.5	345
35	Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nature Communications, 2017, 8, 15139.	12.8	343
36	State-of-the-art characterization techniques for advanced lithium-ion batteries. Nature Energy, 2017, 2, .	39.5	337

#	Article	IF	CITATIONS
37	(De)Lithiation Mechanism of Li/SeS $<$ sub $<$ i $>$ $<$ i $>$ $<$ /sub $>$ ($<$ i $>$ x $<$ /i $>$ = 0â \in "7) Batteries Determined by in Situ Synchrotron X-ray Diffraction and X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2013, 135, 8047-8056.	13.7	332
38	A disordered rock salt anode for fast-charging lithium-ion batteries. Nature, 2020, 585, 63-67.	27.8	326
39	Tailored Preparation Methods of TiO ₂ Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties. Chemistry of Materials, 2010, 22, 1173-1179.	6.7	325
40	Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nature Nanotechnology, 2019, 14, 602-608.	31.5	321
41	Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nature Communications, 2017, 8, .	12.8	301
42	Highâ€Performance Carbonâ€LiMnPO ₄ Nanocomposite Cathode for Lithium Batteries. Advanced Functional Materials, 2010, 20, 3260-3265.	14.9	298
43	Recent Advances in Flexible Zincâ€Based Rechargeable Batteries. Advanced Energy Materials, 2019, 9, 1802605.	19.5	296
44	Oxygen Release Degradation in Liâ€lon Battery Cathode Materials: Mechanisms and Mitigating Approaches. Advanced Energy Materials, 2019, 9, 1900551.	19.5	293
45	Kinetics Tuning of Li-lon Diffusion in Layered Li(Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>})O ₂ 2. Journal of the American Chemical Society, 2015, 137, 8364-8367.	13.7	292
46	Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nature Reviews Materials, 2020, 5, 276-294.	48.7	284
47	Advanced Na[Ni _{0.25} Fe _{0.5} Mn _{0.25}]O ₂ /C–Fe ₃ O _{4 Sodium-Ion Batteries Using EMS Electrolyte for Energy Storage. Nano Letters, 2014, 14, 1620-1626.}	<\z arp >	283
48	Disproportionation in Li–O ₂ Batteries Based on a Large Surface Area Carbon Cathode. Journal of the American Chemical Society, 2013, 135, 15364-15372.	13.7	282
49	Rational Design of Grapheneâ€Supported Single Atom Catalysts for Hydrogen Evolution Reaction. Advanced Energy Materials, 2019, 9, 1803689.	19.5	279
50	Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews, 2020, 49, 5407-5445.	38.1	264
51	Evolution of Lattice Structure and Chemical Composition of the Surface Reconstruction Layer in Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode Material for Lithium Ion Batteries. Nano Letters, 2015, 15, 514-522.	9.1	261
52	Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Nature Communications, 2014, 5, 5693.	12.8	255
53	Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nature Energy, 2021, 6, 277-286.	39.5	255
54	A Novel Cathode Material with a Concentrationâ€Gradient for Highâ€Energy and Safe Lithiumâ€Ion Batteries. Advanced Functional Materials, 2010, 20, 485-491.	14.9	252

#	Article	IF	Citations
55	Nanostructured Black Phosphorus/Ketjenblack–Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. Nano Letters, 2016, 16, 3955-3965.	9.1	246
56	Elucidating anionic oxygen activity in lithium-rich layered oxides. Nature Communications, 2018, 9, 947.	12.8	241
57	Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochemistry Communications, 2006, 8, 329-335.	4.7	238
58	Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. Journal of Power Sources, 2013, 234, 201-207.	7.8	237
59	Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy and Environmental Science, 2012, 5, 9632.	30.8	235
60	Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 12800-12804.	3.1	233
61	Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries. Nano Letters, 2012, 12, 5186-5191.	9.1	231
62	The Effect of Oxygen Crossover on the Anode of a Li–O ₂ Battery using an Etherâ€Based Solvent: Insights from Experimental and Computational Studies. ChemSusChem, 2013, 6, 51-55.	6.8	231
63	Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bulletin, 2014, 39, 395-401.	3.5	226
64	Ultrasound Assisted Design of Sulfur/Carbon Cathodes with Partially Fluorinated Ether Electrolytes for Highly Efficient Li/S Batteries. Advanced Materials, 2013, 25, 1608-1615.	21.0	224
65	Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1702403.	19.5	221
66	The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies. Electrochemical Energy Reviews, 2018, 1, 461-482.	25.5	215
67	Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7074.	6.7	214
68	High Electrochemical Performances of Microsphere C-TiO ₂ Anode for Sodium-Ion Battery. ACS Applied Materials & Diterfaces, 2014, 6, 11295-11301.	8.0	213
69	Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective. Nano Energy, 2018, 52, 279-291.	16.0	211
70	Origin of structural degradation in Li-rich layered oxide cathode. Nature, 2022, 606, 305-312.	27.8	206
71	Flame-retardant additives for lithium-ion batteries. Journal of Power Sources, 2003, 119-121, 383-387.	7.8	204
72	The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews Materials, 2021, 6, 1036-1052.	48.7	201

#	Article	IF	CITATIONS
73	In Situ Probing and Synthetic Control of Cationic Ordering in Niâ€Rich Layered Oxide Cathodes. Advanced Energy Materials, 2017, 7, 1601266.	19.5	200
74	Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy, 2019, 61, 60-68.	16.0	192
7 5	Evidence for lithium superoxide-like species in the discharge product of a Li–O2 battery. Physical Chemistry Chemical Physics, 2013, 15, 3764.	2.8	188
76	Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries. Nature Communications, 2014, 5, 4895.	12.8	186
77	Synthesis of Porous Carbon Supported Palladium Nanoparticle Catalysts by Atomic Layer Deposition: Application for Rechargeable Lithium–O ₂ Battery. Nano Letters, 2013, 13, 4182-4189.	9.1	184
78	Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nature Communications, 2019, 10, 4721.	12.8	182
79	Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates. Journal of the Electrochemical Society, 2004, 151, A178.	2.9	181
80	The influence of large cations on the electrochemical properties of tunnel-structured metal oxides. Nature Communications, 2016, 7, 13374.	12.8	180
81	Tuning of Thermal Stability in Layered Li(Ni _{<i>x</i>} O ₂ . Journal of the American Chemical Society, 2016, 138, 13326-13334.	13.7	178
82	Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22227-22237.	8.0	177
83	In situ fabrication of porous-carbon-supported î±-MnO2 nanorods at room temperature: application for rechargeable Li–O2 batteries. Energy and Environmental Science, 2013, 6, 519.	30.8	175
84	High Capacity O3-Type Na[Li _{0.05} (Ni _{0.25} Fe _{0.25} Mn _{0.5}) _{0.95}]O _{2< Cathode for Sodium Ion Batteries. Chemistry of Materials, 2014, 26, 6165-6171.}	\aenp>	175
85	Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ for Li-lon Batteries. Chemistry of Materials, 2013, 25, 2319-2326.	6.7	173
86	High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO _{<i>x</i>} Doping. ACS Energy Letters, 2016, 1, 395-401.	17.4	172
87	Development of Microstrain in Aged Lithium Transition Metal Oxides. Nano Letters, 2014, 14, 4873-4880.	9.1	171
88	Anion-redox nanolithia cathodes for Li-ion batteries. Nature Energy, 2016, 1, .	39.5	171
89	Insights into the Na ⁺ Storage Mechanism of Phosphorusâ€Functionalized Hard Carbon as Ultrahigh Capacity Anodes. Advanced Energy Materials, 2018, 8, 1702781.	19.5	170
90	Nanoarchitecture Multiâ€Structural Cathode Materials for High Capacity Lithium Batteries. Advanced Functional Materials, 2013, 23, 1070-1075.	14.9	169

#	Article	IF	Citations
91	Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes. Journal of Physical Chemistry C, 2011, 115, 25535-25542.	3.1	166
92	Temperature-Sensitive Structure Evolution of Lithium–Manganese-Rich Layered Oxides for Lithium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 15279-15289.	13.7	163
93	Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy, 2015, 15, 164-176.	16.0	162
94	Dimeric [Mo ₂ S ₁₂] ^{2â^'} Cluster: A Molecular Analogue of MoS ₂ Edges for Superior Hydrogenâ€Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2015, 54, 15181-15185.	13.8	160
95	Reversible Redox Chemistry of Azo Compounds for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 2879-2883.	13.8	159
96	Two-Dimensional Holey Co ₃ O ₄ Nanosheets for High-Rate Alkali-Ion Batteries: From Rational Synthesis to in Situ Probing. Nano Letters, 2017, 17, 3907-3913.	9.1	158
97	3Dâ€Printed Cathodes of LiMn _{1â^'} <i>_x</i> Fe <i>_xNanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithiumâ€ion Battery. Advanced Energy Materials, 2016, 6, 1600856.</i>	19.5	157
98	Tuning the Solid Electrolyte Interphase for Selective Li―and Naâ€Ion Storage in Hard Carbon. Advanced Materials, 2017, 29, 1606860.	21.0	157
99	Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2017, 8, 1072-1077.	4.6	156
100	Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy and Environmental Science, 2021, 14, 5289-5314.	30.8	156
101	Li–Se battery: absence of lithium polyselenides in carbonate based electrolyte. Chemical Communications, 2014, 50, 5576-5579.	4.1	155
102	Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 503-512.	34.4	155
103	Nanostructured TiO ₂ and Its Application in Lithiumâ€ion Storage. Advanced Functional Materials, 2011, 21, 3231-3241.	14.9	154
104	Cationic and anionic redox in lithium-ion based batteries. Chemical Society Reviews, 2020, 49, 1688-1705.	38.1	152
105	Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6197-6202.	7.1	151
106	Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium–Air Batteries. Nano Letters, 2015, 15, 4261-4268.	9.1	149
107	Redox shuttles for safer lithium-ion batteries. Electrochimica Acta, 2009, 54, 5605-5613.	5. 2	148
108	A Metal-Free, Lithium-Ion Oxygen Battery: A Step Forward to Safety in Lithium-Air Batteries. Nano Letters, 2012, 12, 5775-5779.	9.1	148

#	Article	IF	CITATIONS
109	In Operando XRD and TXM Study on the Metastable Structure Change of NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ under Electrochemical Sodiumâ€ion Intercalation. Advanced Energy Materials, 2016, 6, 1601306.	19.5	147
110	Challenges and Strategies to Advance Highâ€Energy Nickelâ€Rich Layered Lithium Transition Metal Oxide Cathodes for Harsh Operation. Advanced Functional Materials, 2020, 30, 2004748.	14.9	146
111	A Rigid Naphthalenediimide Triangle for Organic Rechargeable Lithiumâ€ion Batteries. Advanced Materials, 2015, 27, 2907-2912.	21.0	145
112	Raman Evidence for Late Stage Disproportionation in a Li–O ₂ Battery. Journal of Physical Chemistry Letters, 2014, 5, 2705-2710.	4.6	144
113	Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nature Communications, 2016, 7, 11774.	12.8	143
114	Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1677-1693.	30.8	143
115	Revealing the Rate-Limiting Li-Ion Diffusion Pathway in Ultrathick Electrodes for Li-Ion Batteries. Journal of Physical Chemistry Letters, 2018, 9, 5100-5104.	4.6	143
116	Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nature Communications, 2022, 13, 2319.	12.8	143
117	Multi-scale study of thermal stability of lithiated graphite. Energy and Environmental Science, 2011, 4, 4023.	30.8	140
118	Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox. Nature Energy, 2017, 2, 963-971.	39.5	140
119	Solvating power series of electrolyte solvents for lithium batteries. Energy and Environmental Science, 2019, 12, 1249-1254.	30.8	138
120	Cathode Material with Nanorod Structureâ€"An Application for Advanced High-Energy and Safe Lithium Batteries. Chemistry of Materials, 2013, 25, 2109-2115.	6.7	137
121	Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O ₂ Batteries: Recent Progress and Perspective. Advanced Energy Materials, 2018, 8, 1800348.	19.5	137
122	Exploring Highly Reversible 1.5-Electron Reactions (V ³⁺ /V ⁴⁺ /V ⁵⁺) in Na ₃ VCr(PO ₄) ₃ Cathode for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43632-43639.	8.0	134
123	Stabilization of a High-Capacity and High-Power Nickel-Based Cathode for Li-Ion Batteries. CheM, 2018, 4, 690-704.	11.7	128
124	Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in Highâ€Ni Layered Oxide Cathodes. Advanced Materials, 2017, 29, 1606715.	21.0	127
125	Effects of additives on thermal stability of Li ion cells. Journal of Power Sources, 2005, 146, 116-120.	7.8	126
126	A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 10108.	6.7	126

#	Article	IF	Citations
127	Atomic to Nanoscale Investigation of Functionalities of an Al ₂ O ₃ Coating Layer on a Cathode for Enhanced Battery Performance. Chemistry of Materials, 2016, 28, 857-863.	6.7	125
128	Solid-State Li-lon Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life. Nano Letters, 2016, 16, 1960-1968.	9.1	124
129	Ordering Heterogeneity of [MnO6] Octahedra in Tunnel-Structured MnO2 and Its Influence on Ion Storage. Joule, 2019, 3, 471-484.	24.0	123
130	Parasitic Reactions in Nanosized Silicon Anodes for Lithium-Ion Batteries. Nano Letters, 2017, 17, 1512-1519.	9.1	122
131	Probing the Thermal-Driven Structural and Chemical Degradation of Ni-Rich Layered Cathodes by Co/Mn Exchange. Journal of the American Chemical Society, 2020, 142, 19745-19753.	13.7	122
132	Anion Solvation in Carbonate-Based Electrolytes. Journal of Physical Chemistry C, 2015, 119, 27255-27264.	3.1	121
133	Insight into Sulfur Reactions in Li–S Batteries. ACS Applied Materials & Emp; Interfaces, 2014, 6, 21938-21945.	8.0	120
134	Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes. Journal of Materials Chemistry, 2011, 21, 9290.	6.7	119
135	Silicon-Graphene Composite Anodes for High-Energy Lithium Batteries. Energy Technology, 2013, 1, 77-84.	3.8	118
136	Synthesis of Spherical Nano- to Microscale Coreâ°'Shell Particles Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2and Their Applications to Lithium Batteries. Chemistry of Materials, 2006, 18, 5159-5163.	6.7	116
137	LixNi0.25Mn0.75Oy (0.5 ≤â‰型, 2 â‰ÿâ‰型.75) compounds for high-energy lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 4510.	6.7	116
138	Openâ€Structured V ₂ O ₅ · <i>n</i> H ₂ O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries. Advanced Energy Materials, 2017, 7, 1602720.	19.5	116
139	Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries. Nano Energy, 2017, 35, 370-378.	16.0	116
140	Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy, 2021, 85, 105878.	16.0	116
141	New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nature Communications, 2013, 4, 1513.	12.8	115
142	Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Materials, 2019, 17, 284-292.	18.0	115
143	Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode. Chemistry of Materials, 2019, 31, 2723-2730.	6.7	114
144	Cationic Ordering Coupled to Reconstruction of Basic Building Units during Synthesis of High-Ni Layered Oxides. Journal of the American Chemical Society, 2018, 140, 12484-12492.	13.7	113

#	Article	IF	Citations
145	The Role of Ru in Improving the Activity of Pd toward Hydrogen Evolution and Oxidation Reactions in Alkaline Solutions. ACS Catalysis, 2019, 9, 9614-9621.	11.2	112
146	Selenium and Selenium–Sulfur Chemistry for Rechargeable Lithium Batteries: Interplay of Cathode Structures, Electrolytes, and Interfaces. ACS Energy Letters, 2017, 2, 605-614.	17.4	110
147	Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nature Communications, 2017, 8, 627.	12.8	110
148	Solar-powered electrochemical energy storage: an alternative to solar fuels. Journal of Materials Chemistry A, 2016, 4, 2766-2782.	10.3	109
149	Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. Journal of Power Sources, 2019, 412, 336-343.	7.8	109
150	Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. Journal of Power Sources, 2020, 459, 228073.	7.8	109
151	Atomic/molecular layer deposition for energy storage and conversion. Chemical Society Reviews, 2021, 50, 3889-3956.	38.1	109
152	Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co, and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials. Chemistry of Materials, 2015, 27, 5393-5401.	6.7	108
153	Wholeâ€Voltageâ€Range Oxygen Redox in P2â€Layered Cathode Materials for Sodiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2008194.	21.0	108
154	Tuning Li ₂ O ₂ Formation Routes by Facet Engineering of MnO ₂ Cathode Catalysts. Journal of the American Chemical Society, 2019, 141, 12832-12838.	13.7	107
155	Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials. Chemistry of Materials, 2011, 23, 1954-1963.	6.7	106
156	Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection. Energy and Environmental Science, 2012, 5, 8204.	30.8	105
157	Wood Carbon Based Single-Atom Catalyst for Rechargeable Zn–Air Batteries. ACS Energy Letters, 2021, 6, 3624-3633.	17.4	103
158	Contribution of the Structural Changes of LiNi[sub 0.8]Co[sub 0.15]Al[sub 0.05]O[sub 2] Cathodes on the Exothermic Reactions in Li-Ion Cells. Journal of the Electrochemical Society, 2006, 153, A731.	2.9	102
159	Doubleâ€Structured LiMn _{0.85} Fe _{0.15} PO ₄ Coordinated with LiFePO ₄ for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2012, 51, 1853-1856.	13.8	102
160	Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. Journal of Power Sources, 2010, 195, 2023-2028.	7.8	101
161	Facet-Dependent Thermal Instability in LiCoO ₂ . Nano Letters, 2017, 17, 2165-2171.	9.1	99
162	Low-temperature study of lithium-ion cells using a LiySn micro-reference electrode. Journal of Power Sources, 2007, 174, 373-379.	7.8	98

#	Article	IF	Citations
163	High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries. Electrochimica Acta, 2010, 55, 8621-8627.	5.2	98
164	Nanostructured cathode materials for rechargeable lithium batteries. Journal of Power Sources, 2015, 283, 219-236.	7.8	97
165	Insight into Caâ€Substitution Effects on O3â€Type NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ Cathode Materials for Sodiumâ€ion Batteries Application. Small, 2018, 14, e1704523.	10.0	97
166	Silica Restricting the Sulfur Volatilization of Nickel Sulfide for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901153.	19.5	94
167	Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li–O ₂ Batteries. ACS Applied Materials & ACS ACS Applied Materials & ACS	8.0	93
168	Interfacial Effects on Lithium Superoxide Disproportionation in Li-O ₂ Batteries. Nano Letters, 2015, 15, 1041-1046.	9.1	92
169	Textile Inspired Lithium–Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways. Advanced Materials, 2018, 30, 1704907.	21.0	92
170	Insights into Li/Ni ordering and surface reconstruction during synthesis of Ni-rich layered oxides. Journal of Materials Chemistry A, 2019, 7, 513-519.	10.3	92
171	In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery. Journal of Power Sources, 2013, 230, 32-37.	7.8	91
172	Toward Highly Efficient Electrocatalyst for Li–O ₂ Batteries Using Biphasic N-Doping Cobalt@Graphene Multiple-Capsule Heterostructures. Nano Letters, 2017, 17, 2959-2966.	9.1	91
173	Computational Studies of Polysiloxanes: Oxidation Potentials and Decomposition Reactions. Journal of Physical Chemistry C, 2011, 115, 12216-12223.	3.1	89
174	Mechanism of capacity fade of MCMB/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2 cell at elevated temperature and additives to improve its cycle life. Journal of Materials Chemistry, 2011, 21, 17754.	6.7	89
175	PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy, 2015, 18, 253-264.	16.0	89
176	MLi < sub > 2 < / sub > Ti < sub > 6 < / sub > O < sub > 14 < / sub > (M = Sr, Ba, 2Na) Lithium Insertion Titanate Materials: A Comparative Study. Inorganic Chemistry, 2010, 49, 2822-2826.	4.0	88
177	RuO2 nanoparticles supported on MnO2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery. Nano Energy, 2016, 28, 63-70.	16.0	88
178	Platinumâ€Coated Hollow Graphene Nanocages as Cathode Used in Lithiumâ€Oxygen Batteries. Advanced Functional Materials, 2016, 26, 7626-7633.	14.9	88
179	Kinetic Study of Parasitic Reactions in Lithium-lon Batteries: A Case Study on LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ . ACS Applied Materials & Interfaces, 2016, 8, 3446-3451.	8.0	88
180	Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chemical Society Reviews, 2020, 49, 4667-4680.	38.1	88

#	Article	IF	Citations
181	Intrinsic Role of Cationic Substitution in Tuning Li/Ni Mixing in High-Ni Layered Oxides. Chemistry of Materials, 2019, 31, 2731-2740.	6.7	85
182	Insight into the Capacity Fading Mechanism of Amorphous Se ₂ S ₅ Confined in Micro/Mesoporous Carbon Matrix in Ether-Based Electrolytes. Nano Letters, 2016, 16, 2663-2673.	9.1	83
183	Nitrogen and sulfur co-doped porous carbon sheets for energy storage and pH-universal oxygen reduction reaction. Nano Energy, 2018, 54, 192-199.	16.0	83
184	Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nature Communications, 2022, 13, 172.	12.8	83
185	Nanoporous Structured LiFePO[sub 4] with Spherical Microscale Particles Having High Volumetric Capacity for Lithium Batteries. Electrochemical and Solid-State Letters, 2009, 12, A181.	2.2	82
186	Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fastâ€Charging Zn Battery Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	82
187	Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion. Nano Letters, 2017, 17, 2539-2546.	9.1	81
188	In Situ Construction of Uniform and Robust Cathode–Electrolyte Interphase for Liâ€Rich Layered Oxides. Advanced Functional Materials, 2021, 31, 2009192.	14.9	81
189	LiMn2O4 spinel and substituted cathodes. Nature Energy, 2021, 6, 566-566.	39 . 5	81
190	Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nature Communications, 2021, 12, 6024.	12.8	80
191	Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy, 2017, 33, 497-507.	16.0	79
192	Identifying the Structural Evolution of the Sodium Ion Battery Na ₂ FePO ₄ FCathode. Angewandte Chemie - International Edition, 2018, 57, 11918-11923.	13.8	79
193	Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 2021, 37, 77-86.	18.0	78
194	Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O2 batteries. Physical Chemistry Chemical Physics, 2013, 15, 5572.	2.8	76
195	Enabling high energy density Li-ion batteries through Li2O activation. Nano Energy, 2016, 27, 196-201.	16.0	75
196	Interactions of Dimethoxy Ethane with Li ₂ O ₂ Clusters and Likely Decomposition Mechanisms for Li–O ₂ Batteries. Journal of Physical Chemistry C, 2013, 117, 8041-8049.	3.1	74
197	In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications, 2021, 12, 4235.	12.8	74
198	Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials, 2021, 39, 395-402.	18.0	74

#	Article	IF	CITATIONS
199	3D Hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes. Nano Energy, 2017, 32, 10-18.	16.0	73
200	Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. Journal of Materials Chemistry, 2009, 19, 1995.	6.7	72
201	Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety. Nano Energy, 2020, 71, 104643.	16.0	72
202	Atomic Layer Deposition for Lithiumâ€Based Batteries. Advanced Materials Interfaces, 2016, 3, 1600564.	3.7	71
203	High rate and long cycle life in Li-O2 batteries with highly efficient catalytic cathode configured with Co3O4 nanoflower. Nano Energy, 2019, 64, 103896.	16.0	71
204	Novel redox shuttle additive for high-voltage cathode materials. Energy and Environmental Science, 2011, 4, 2858.	30.8	70
205	Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness. Advanced Energy Materials, 2019, 9, 1803087.	19.5	70
206	The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2018, 57, 12033-12036.	13.8	69
207	Highly Reversible Sodiation/Desodiation from a Carbon-Sandwiched SnS ₂ Nanosheet Anode for Sodium Ion Batteries. Nano Letters, 2020, 20, 3844-3851.	9.1	69
208	Understanding the redox shuttle stability of 3,5-di-tert-butyl-1,2-dimethoxybenzene for overcharge protection of lithium-ion batteries. Journal of Power Sources, 2010, 195, 4957-4962.	7.8	68
209	Prelithiation Activates Li(Ni _{0.5} Mn _{0.3} Co _{0.2})O ₂ for High Capacity and Excellent Cycling Stability. Nano Letters, 2015, 15, 5590-5596.	9.1	68
210	Li4Ti5O12 spinel anodes. Nature Energy, 2021, 6, 683-683.	39.5	68
211	Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical Highâ€Energy Liâ€6 Batteries. Angewandte Chemie - International Edition, 2020, 59, 17634-17640.	13.8	67
212	Layered Li–Ni–Mn–Co oxide cathodes. Nature Energy, 2021, 6, 933-933.	39.5	67
213	Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction. Nano Energy, 2016, 19, 522-531.	16.0	66
214	An Effectively Activated Hierarchical Nanoâ€∤Microspherical Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode for Long‣ife and Highâ€Rate Lithium‣on Batteries. ChemSusChem, 2016, 9, 728-735.	6.8	65
215	The importance of anode protection towards lithium oxygen batteries. Journal of Materials Chemistry A, 2020, 8, 3563-3573.	10.3	65
216	Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports. Nature Communications, 2020, 11, 6373.	12.8	65

#	Article	IF	Citations
217	Regulating the Hidden Solvationâ€Ionâ€Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 2000901.	19.5	65
218	Full Concentration Gradientâ€Tailored Liâ€Rich Layered Oxides for Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2001358.	21.0	65
219	Probing Thermal and Chemical Stability of Na _(i) Ni _{1/3} Ni _{1/3} Ni _{1/3} Ni _{Ni}}	6.7	64
220	Template-assisted synthesis of high packing density SrLi2Ti6O14 for use as anode in 2.7-V lithium-ion battery. Journal of Power Sources, 2011, 196, 2871-2874.	7.8	63
221	Symmetrical Impedance Study on Inactivation Induced Degradation of Lithium Electrodes for Batteries Beyond Lithium-Ion. Journal of the Electrochemical Society, 2014, 161, A827-A830.	2.9	63
222	New Insights into the Instability of Discharge Products in Na–O ₂ Batteries. ACS Applied Materials & Discharge Products in Na–O ₂ Batteries. ACS Applied Materials & Discharge Products in Na–O ₂	8.0	63
223	Solidâ€State Lithium/Selenium–Sulfur Chemistry Enabled via a Robust Solidâ€Electrolyte Interphase. Advanced Energy Materials, 2019, 9, 1802235.	19.5	63
224	Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nature Communications, 2022, 13, .	12.8	61
225	Encapsulating Various Sulfur Allotropes within Graphene Nanocages for Longâ€Lasting Lithium Storage. Advanced Functional Materials, 2018, 28, 1706443.	14.9	60
226	Antiâ€Oxygen Leaking LiCoO ₂ . Advanced Functional Materials, 2019, 29, 1901110.	14.9	60
227	Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries. Nano Energy, 2018, 49, 338-345.	16.0	59
228	Integrating Multiredox Centers into One Framework for High-Performance Organic Li-lon Battery Cathodes. ACS Energy Letters, 2020, 5, 224-231.	17.4	59
229	Vacancyâ€Enabled O3 Phase Stabilization for Manganeseâ€Rich Layered Sodium Cathodes. Angewandte Chemie - International Edition, 2021, 60, 8258-8267.	13.8	59
230	Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte. Advanced Energy Materials, 2021, 11, 2102299.	19.5	59
231	Î ³ -Fe ₂ O ₃ Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage. ACS Applied Materials & amp; Interfaces, 2015, 7, 26284-26290.	8.0	58
232	Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44542-44549.	8.0	58
233	Synthesis and Characterization of Tetra- and Trisiloxane-Containing Oligo(ethylene glycol)s Highly Conducting Electrolytes for Lithium Batteries. Chemistry of Materials, 2006, 18, 1289-1295.	6.7	57
234	Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation. Journal of Power Sources, 2015, 274, 451-457.	7.8	57

#	Article	IF	CITATIONS
235	Cations controlled growth of \hat{l}^2 -MnO2 crystals with tunable facets for electrochemical energy storage. Nano Energy, 2018, 48, 301-311.	16.0	56
236	A practical phosphorus-based anode material for high-energy lithium-ion batteries. Nano Energy, 2020, 74, 104849.	16.0	56
237	3-Hexylthiophene as a Stabilizing Additive for High Voltage Cathodes in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A268-A271.	2.9	55
238	Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nature Energy, 2022, 7, 808-817.	39.5	55
239	Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li–O2 batteries. RSC Advances, 2013, 3, 8276.	3.6	54
240	Dynamic study of (De)sodiation in alpha-MnO2 nanowires. Nano Energy, 2016, 19, 382-390.	16.0	54
241	Excess Li-lon Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance. Nano Letters, 2017, 17, 6018-6026.	9.1	53
242	Fundamental Understanding of Waterâ€Induced Mechanisms in Li–O ₂ Batteries: Recent Developments and Perspectives. Advanced Materials, 2019, 31, e1805602.	21.0	52
243	Revisiting the Role of Conductivity and Polarity of Host Materials for Longâ€Life Lithium–Sulfur Battery. Advanced Energy Materials, 2020, 10, 1903934.	19.5	52
244	Demonstration of highly efficient lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 4170-4179.	10.3	51
245	Simultaneously Blocking Chemical Crosstalk and Internal Short Circuit via Gelâ€Stretching Derived Nanoporous Nonâ€Shrinkage Separator for Safe Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2106335.	21.0	51
246	Selective Growth of a Discontinuous Subnanometer Pd Film on Carbon Defects for Li–O ₂ Batteries. ACS Energy Letters, 2019, 4, 2782-2786.	17.4	50
247	Prelithiated Li-Enriched Gradient Interphase toward Practical High-Energy NMC–Silicon Full Cell. ACS Energy Letters, 2021, 6, 320-328.	17.4	50
248	Solid state synthesis of LiFePO4 studied by in situ high energy X-ray diffraction. Journal of Materials Chemistry, 2011, 21, 5604.	6.7	49
249	Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte. Nature Communications, 2019, 10, 1890.	12.8	49
250	Understanding the Reactivity of a Thin Li _{1.5} (PO ₄) ₃ Solid tate Electrolyte toward Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001497.	19.5	49
251	In-built ultraconformal interphases enable high-safety practical lithium batteries. Energy Storage Materials, 2021, 43, 248-257.	18.0	49
252	Study of Thermal Decomposition of Li _{1â€x} (Ni _{1/3} O _{1/3} \Co _{1/3})(sub>0.9O ₂ Using Inâ€Situ Highâ€Energy Xâ€Ray Diffraction. Advanced Energy Materials, 2013, 3, 729-736.	19.5	48

#	Article	IF	CITATIONS
253	Lithium Tetrafluoro Oxalato Phosphate as Electrolyte Additive for Lithium-Ion Cells. Electrochemical and Solid-State Letters, 2010, 13, A11.	2.2	47
254	Probing Thermally Induced Decomposition of Delithiated Li _{1.2â€"<i>x</i>} Ni _{0.15} Mn _{0.55} Co _{0.1} O ₂ by in Situ High-Energy X-ray Diffraction. ACS Applied Materials & Diffraction. Diffraction. ACS Applied Materials & Diffraction. Diffractio	8.0	47
255	Identification and Implications of Lithium Superoxide in Li–O ₂ Batteries. ACS Energy Letters, 2018, 3, 1105-1109.	17.4	47
256	Singleâ€Crystal Silicon Membranes with High Lithium Conductivity and Application in Lithiumâ€Air Batteries. Advanced Materials, 2011, 23, 4947-4952.	21.0	46
257	Recent Research Progress on Non-aqueous Lithium-Air Batteries from Argonne National Laboratory. Energies, 2013, 6, 6016-6044.	3.1	46
258	Lithiumâ€Rich Nanoscale Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ Cathode Material Prepared by Coâ€Precipitation Combined Freeze Drying (CP–FD) for Lithiumâ€lon Batteries. Energy Technology, 2015, 3, 843-850.	3.8	46
259	Highâ€Rate, Durable Sodiumâ€Ion Battery Cathode Enabled by Carbonâ€Coated Microâ€Sized Na ₃ V ₂ (PO ₄) ₃ Particles with Interconnected Vertical Nanowalls. Advanced Materials Interfaces, 2016, 3, 1500740.	3.7	46
260	Cascading Boost Effect on the Capacity of Nitrogen-Doped Graphene Sheets for Li- and Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26722-26729.	8.0	46
261	Modifying the Surface of a High-Voltage Lithium-Ion Cathode. ACS Applied Energy Materials, 2018, 1, 2254-2260.	5.1	46
262	Synthesis and Ionic Conductivity of Cyclosiloxanes with Ethyleneoxy-Containing Substituents. Chemistry of Materials, 2005, 17, 5646-5650.	6.7	45
263	In Situ TEM Investigation of ZnO Nanowires during Sodiation and Lithiation Cycling. Small Methods, 2017, 1, 1700202.	8.6	45
264	Solvation Rule for Solidâ€Electrolyte Interphase Enabler in Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 18229-18233.	13.8	45
265	Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries. Energy and Environmental Science, 2021, 14, 3029-3034.	30.8	44
266	Laserâ€Irradiated Holey Grapheneâ€Supported Singleâ€Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction. Advanced Energy Materials, 2021, 11, 2101619.	19.5	43
267	Improve First-Cycle Efficiency and Rate Performance of Layered-Layered Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ Using Oxygen Stabilizing Dopant. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16040-16045.	8.0	42
268	A universal method to fabricating porous carbon for Li-O2 battery. Nano Energy, 2021, 82, 105782.	16.0	42
269	Controllable crystalline preferred orientation in Li–Co–Ni–Mn oxide cathode thin films for all-solid-state lithium batteries. Nanoscale, 2014, 6, 10611.	5.6	41
270	Lithium Superoxide Hydrolysis and Relevance to Li–O ₂ Batteries. Journal of Physical Chemistry C, 2017, 121, 9657-9661.	3.1	41

#	Article	IF	Citations
271	Sub-5â€ ⁻ nm edge-rich 1Tâ€ ² -ReSe2 as bifunctional materials for hydrogen evolution and sodium-ion storage. Nano Energy, 2019, 58, 660-668.	16.0	41
272	Regulation of Surface Defect Chemistry toward Stable Niâ€Rich Cathodes. Advanced Materials, 2022, 34, e2200744.	21.0	41
273	Advanced cathode materials for lithium-ion batteries. MRS Bulletin, 2011, 36, 498-505.	3.5	40
274	Scalable Preparation of Ternary Hierarchical Silicon Oxide–Nickel–Graphite Composites for Lithium″on Batteries. ChemSusChem, 2015, 8, 4073-4080.	6.8	40
275	Mg-Enriched Engineered Carbon from Lithium-Ion Battery Anode for Phosphate Removal. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2905-2909.	8.0	40
276	Correlations between Transition-Metal Chemistry, Local Structure, and Global Structure in Li ₂ Ru _{0.5} Mn _{0.5} O ₃ Investigated in a Wide Voltage Window. Chemistry of Materials, 2017, 29, 9053-9065.	6.7	40
277	Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid. Nano Letters, 2018, 18, 336-346.	9.1	40
278	Formation of a Continuous Solidâ€Solution Particle and its Application to Rechargeable Lithium Batteries. Advanced Functional Materials, 2013, 23, 1028-1036.	14.9	39
279	Insight into the Catalytic Mechanism of Bimetallic Platinum–Copper Core–Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions. Nano Letters, 2016, 16, 781-785.	9.1	39
280	An advanced high energy-efficiency rechargeable aluminum-selenium battery. Nano Energy, 2019, 66, 104159.	16.0	39
281	Electrolytes Polymerizationâ€Induced Cathodeâ€Electrolyteâ€Interphase for High Voltage Lithiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2101956.	19.5	39
282	Nitrogenâ€Doped Nanoporous Graphenic Carbon: An Efficient Conducting Support for O ₂ Cathode. ChemNanoMat, 2016, 2, 692-697.	2.8	38
283	Insights into Structural Evolution of Lithium Peroxides with Reduced Charge Overpotential in Liâ ²³ O ₂ System. Advanced Energy Materials, 2019, 9, 1900662.	19.5	38
284	Asymmetric K/Li-lon Battery Based on Intercalation Selectivity. ACS Energy Letters, 2018, 3, 65-71.	17.4	36
285	A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Freeâ€Energy Relationship in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 10591-10595.	13.8	36
286	Mesoscale-architecture-based crack evolution dictating cycling stability of advanced lithium ion batteries. Nano Energy, 2021, 79, 105420.	16.0	36
287	Tuning the Mn Deposition on the Anode to Improve the Cycle Performance of the Mnâ€Based Lithium Ion Battery. Advanced Materials Interfaces, 2016, 3, 1500856.	3.7	35
288	Toward a mechanistic understanding of electrocatalytic nanocarbon. Nature Communications, 2021, 12, 3288.	12.8	35

#	Article	IF	CITATIONS
289	Dual Lithium Insertion and Conversion Mechanisms in a Titanium-Based Mixed-Anion Nanocomposite. Journal of the American Chemical Society, 2011, 133, 13240-13243.	13.7	34
290	Sodium Peroxide Dihydrate or Sodium Superoxide: The Importance of the Cell Configuration for Sodium–Oxygen Batteries. Small Methods, 2017, 1, 1700102.	8.6	34
291	Triphase electrode performance adjustment for rechargeable ion batteries. Nano Energy, 2018, 43, 1-10.	16.0	34
292	Cooling Induced Surface Reconstruction during Synthesis of Highâ€Ni Layered Oxides. Advanced Energy Materials, 2019, 9, 1901915.	19.5	34
293	Uncommon Behavior of Li Doping Suppresses Oxygen Redox in P2â€₹ype Manganeseâ€Rich Sodium Cathodes. Advanced Materials, 2021, 33, e2107141.	21.0	34
294	Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries. Nano Energy, 2022, 92, 106720.	16.0	34
295	Toward high surface area TiO2 brookite with morphology control. Journal of Materials Chemistry, 2011, 21, 3085.	6.7	33
296	A high performance separator with improved thermal stability for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 8538.	10.3	33
297	Freestanding highly defect nitrogen-enriched carbon nanofibers for lithium ion battery thin-film anodes. Journal of Materials Chemistry A, 2017, 5, 5532-5540.	10.3	33
298	Reversible Redox Chemistry of Azo Compounds for Sodiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 2929-2933.	2.0	33
299	Enabling stable and high-rate cycling of a Ni-rich layered oxide cathode for lithium-ion batteries by modification with an artificial Li ⁺ -conducting cathode-electrolyte interphase. Journal of Materials Chemistry A, 2021, 9, 11623-11631.	10.3	33
300	Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion Batteries. ACS Energy Letters, 2021, 6, 547-556.	17.4	33
301	Pre-Lithiation of Li(Ni _{1-<i>x</i>-<i>y</i>} Mn _{<i>x</i>} Co _{<i>y</i>})O ₂ Materials Enabling Enhancement of Performance for Li-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15361-15368.	8.0	32
302	Effect of Componential Proportion in Bimetallic Electrocatalysts on the Aprotic Lithiumâ€Oxygen Battery Performance. Advanced Energy Materials, 2018, 8, 1703230.	19.5	32
303	On the P2-Na <i>>csub>x</i> Co _{1â€"<i>y</i>} (Mn _{2/3} Ni _{1/3}) <i>y</i> O _{2 Cathode Materials for Sodium-Ion Batteries: Synthesis, Electrochemical Performance, and Redox Processes Occurring during the Electrochemical Cycling. ACS Applied Materials & Diterfaces, 2018,}		32
304	Solid-State Synthesis of Highly Dispersed Nitrogen-Coordinated Single Iron Atom Electrocatalysts for Proton Exchange Membrane Fuel Cells. Nano Letters, 2021, 21, 3633-3639.	9.1	32
305	Enabling Highâ€Performance NASICONâ€Based Solidâ€State Lithium Metal Batteries Towards Practical Conditions. Advanced Functional Materials, 2021, 31, 2102765.	14.9	32
306	Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 8224.	6.7	31

#	Article	IF	Citations
307	From Sodium–Oxygen to Sodium–Air Battery: Enabled by Sodium Peroxide Dihydrate. Nano Letters, 2020, 20, 4681-4686.	9.1	31
308	<i>In Situ</i> Localized Polysulfide Injector for the Activation of Bulk Lithium Sulfide. Journal of the American Chemical Society, 2021, 143, 2185-2189.	13.7	31
309	In Situ Formation of Polycyclic Aromatic Hydrocarbons as an Artificial Hybrid Layer for Lithium Metal Anodes. Nano Letters, 2022, 22, 263-270.	9.1	31
310	Impacts of Dissolved Ni ²⁺ on the Solid Electrolyte Interphase on a Graphite Anode. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
311	Insights into the Distinct Lithiation/Sodiation of Porous Cobalt Oxide by in Operando Synchrotron X-ray Techniques and Ab Initio Molecular Dynamics Simulations. Nano Letters, 2017, 17, 953-962.	9.1	30
312	Revealing the Atomic Origin of Heterogeneous Liâ€lon Diffusion by Probing Na. Advanced Materials, 2019, 31, e1805889.	21.0	30
313	High Nickel and No Cobalt─The Pursuit of Next-Generation Layered Oxide Cathodes. ACS Applied Materials & Company (1988) Materi	8.0	30
314	A Critical Review on Superoxideâ€Based Sodium–Oxygen Batteries. Small Methods, 2019, 3, 1800247.	8.6	29
315	Boosting Superior Lithium Storage Performance of Alloyâ€Based Anode Materials via Ultraconformal Sb Coating–Derived Favorable Solidâ€Electrolyte Interphase. Advanced Energy Materials, 2020, 10, 1903186.	19.5	29
316	<i>In Situ</i> Construction of an Ultrarobust and Lithiophilic Li-Enriched Li–N Nanoshield for High-Performance Ge-Based Anode Materials. ACS Energy Letters, 2020, 5, 3490-3497.	17.4	29
317	Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2020, 59, 22978-22982.	13.8	29
318	Nanotechnology for Sulfur Cathodes. ACS Nano, 2021, 15, 8087-8094.	14.6	29
319	Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nature Communications, 2022, 13, 436.	12.8	29
320	Transferring Liquid Metal to form a Hybrid Solid Electrolyte via a Wettabilityâ€Tuning Technology for Lithiumâ€Metal Anodes. Advanced Materials, 2022, 34, e2200181.	21.0	28
321	Enhanced rate performance of LiNi0.5Mn1.5O4 fibers synthesized by electrospinning. Nano Energy, 2015, 15, 616-624.	16.0	27
322	Reviewâ€"Understanding and Mitigating Some of the Key Factors that Limit Non-Aqueous Lithium-Air Battery Performance. Journal of the Electrochemical Society, 2015, 162, A2439-A2446.	2.9	27
323	Efficient diffusion of superdense lithium <i>via</i> atomic channels for dendrite-free lithium–metal batteries. Energy and Environmental Science, 2022, 15, 196-205.	30.8	27
324	Fused ring and linking groups effect on overcharge protection for lithium-ion batteries. Journal of Power Sources, 2011, 196, 1530-1536.	7.8	26

#	Article	IF	CITATIONS
325	Understanding the Role of Lithium Iodide in Lithium–Oxygen Batteries. Advanced Materials, 2022, 34, e2106148.	21.0	26
326	Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery. Nanotechnology, 2015, 26, 164003.	2.6	25
327	High performance lithium-manganese-rich cathode material with reduced impurities. Nano Energy, 2017, 31, 247-257.	16.0	25
328	Internally Referenced DOSY-NMR: A Novel Analytical Method in Revealing the Solution Structure of Lithium-Ion Battery Electrolytes. Journal of Physical Chemistry Letters, 2018, 9, 3714-3719.	4.6	25
329	The Absence and Importance of Operando Techniques for Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1805609.	21.0	25
330	TiO ₂ Nanocrystalâ€Framed Li ₂ TiSiO ₅ Platelets for Lowâ€Voltage Lithium Battery Anode. Advanced Functional Materials, 2020, 30, 2001909.	14.9	25
331	Hollow lithiated metal oxide particles as lithium-ion battery cathode materials. Electrochimica Acta, 2011, 56, 1426-1431.	5.2	24
332	Mechanically alloyed composite anode materials based on SiO–SnxFeyCz for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4376.	10.3	24
333	Differentiating allotropic LiCoO2/Li2Co2O4: A structural and electrochemical study. Journal of Power Sources, 2014, 271, 97-103.	7.8	24
334	An organophosphine oxide redox shuttle additive that delivers long-term overcharge protection for 4 V lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10710-10714.	10.3	24
335	Protecting Al foils for high-voltage lithium-ion chemistries. Materials Today Energy, 2018, 7, 18-26.	4.7	24
336	Silicon-Containing Carbonatesâ€"Synthesis, Characterization, and Additive Effects for Silicon-Based Polymer Electrolytes. Silicon, 2010, 2, 201-208.	3.3	23
337	Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. Journal of Power Sources, 2017, 341, 114-121.	7.8	23
338	Metalâ€lon Batteries: Openâ€6tructured V ₂ O ₅ · <i>n</i> H ₂ O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries (Adv. Energy Mater. 14/2017). Advanced Energy Materials, 2017, 7, .	19.5	23
339	Unveiling decaying mechanism through quantitative structure-activity relationship in electrolytes for lithium-ion batteries. Nano Energy, 2021, 83, 105843.	16.0	23
340	Migration of Mn cations in delithiated lithium manganese oxides. Physical Chemistry Chemical Physics, 2014, 16, 20697-20702.	2.8	22
341	Ultrasonic-assisted co-precipitation to synthesize lithium-rich cathode Li1.3Ni0.21Mn0.64O2+ materials for lithium-ion batteries. Journal of Power Sources, 2014, 272, 922-928.	7.8	22
342	Improvement of Electrochemical Properties of Lithium–Oxygen Batteries Using a Silver Electrode. Journal of Physical Chemistry C, 2015, 119, 15036-15040.	3.1	22

#	Article	IF	CITATIONS
343	Oxygenâ€Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium–Air Battery Electrode. Advanced Science, 2017, 4, 1600453.	11.2	22
344	Identifying the Structural Evolution of the Sodium Ion Battery Na ₂ FePO ₄ FCathode. Angewandte Chemie, 2018, 130, 12094-12099.	2.0	22
345	Correlating Catalyst Design and Discharged Product to Reduce Overpotential in Li O ₂ Batteries. Small, 2021, 17, e2007760.	10.0	22
346	A general strategy for batch development of high-performance and cost-effective sodium layered cathodes. Nano Energy, 2021, 89, 106371.	16.0	22
347	Durable hybrid electrocatalysts for proton exchange membrane fuel cells. Nano Energy, 2020, 77, 105192.	16.0	21
348	Oxygen-Based Anion Redox for Lithium Batteries. Accounts of Chemical Research, 2020, 53, 1436-1444.	15.6	21
349	Superior long-term cycling of high-voltage lithium-ion batteries enabled by single-solvent electrolyte. Nano Energy, 2021, 89, 106299.	16.0	21
350	Multiscale Understanding of Surface Structural Effects on Highâ€√emperature Operational Resiliency of Layered Oxide Cathodes. Advanced Materials, 2022, 34, e2107326.	21.0	21
351	Unravelling the Nature of the Intrinsic Complex Structure of Binaryâ€Phase Naâ€Layered Oxides. Advanced Materials, 2022, 34, e2202137.	21.0	21
352	How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. Nano Energy, 2022, 98, 107336.	16.0	21
353	Combining the Pair Distribution Function and Computational Methods To Understand Lithium Insertion in Brookite (TiO ₂). Inorganic Chemistry, 2011, 50, 5855-5857.	4.0	20
354	The migration mechanism of transition metal ions in LiNi _{0.5} Mn _{1.5} O ₄ . Journal of Materials Chemistry A, 2015, 3, 13031-13038.	10.3	20
355	Systematic study on the discharge product of Pt-based lithium oxygen batteries. Journal of Power Sources, 2016, 332, 96-102.	7.8	20
356	Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity. ACS Catalysis, 2018, 8, 466-473.	11.2	20
357	(S)TEM-EELS as an advanced characterization technique for lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 5186-5193.	5.9	20
358	Separator/Electrode Assembly Based on Thermally Stable Polymer for Safe Lithiumâ€ion Batteries. Advanced Energy Materials, 2014, 4, 1301208.	19.5	19
359	A XANES study of LiVPO4F: a factor analysis approach. Physical Chemistry Chemical Physics, 2014, 16, 3254.	2.8	19
360	Revealing the Structural Evolution and Phase Transformation of O3-Type NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ Cathode Material on Sintering and Cycling Processes. ACS Applied Energy Materials, 2020, 3, 6107-6114.	5.1	19

#	Article	IF	Citations
361	Chemistry and electrochemistry of concentric ring cathode Li1.42Ni0.25Mn0.75O2+γ for lithium batteries. Journal of Materials Chemistry, 2012, 22, 12039.	6.7	18
362	Silicon-Graphene Composite Anodes for High-Energy Lithium Batteries. Energy Technology, 2013, 1, 77-84.	3.8	18
363	Nanorod and Nanoparticle Shells in Concentration Gradient Core–Shell Lithium Oxides for Rechargeable Lithium Batteries. ChemSusChem, 2014, 7, 3295-3303.	6.8	18
364	Understanding atomic scale phenomena within the surface layer of a long-term cycled 5 V spinel electrode. Nano Energy, 2016, 19, 297-306.	16.0	18
365	Mechanism of the First Lithiation/Delithiation Process in the Anode Material CoFeOPO ₄ @C for Li-lon Batteries. Journal of Physical Chemistry C, 2018, 122, 7139-7148.	3.1	18
366	Revealing the Atomic Structures of Exposed Lateral Surfaces for Polymorphic Manganese Dioxide Nanowires. Small Structures, 2021, 2, 2000091.	12.0	18
367	Implications of the Unpaired Spins in Li–O ₂ Battery Chemistry and Electrochemistry: A Minireview. ChemPlusChem, 2015, 80, 336-343.	2.8	17
368	The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie, 2018, 130, 12209-12212.	2.0	17
369	Charge Transport Properties of Lithium Superoxide in Li–O ₂ Batteries. ACS Applied Energy Materials, 2020, 3, 12575-12583.	5.1	17
370	Probing solid-state reaction through microstrain: A case study on synthesis of LiCoO2. Journal of Power Sources, 2020, 469, 228422.	7.8	17
371	Uniformly dispersed FeO x atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li–O2 battery. Nano Research, 2016, 9, 1913-1920.	10.4	16
372	Lithiation-Induced Non-Noble Metal Nanoparticles for Li–O ₂ Batteries. ACS Applied Materials & Lithiation (Sub) (8.0	16
373	A Facile Approach to High Precision Detection of Cell-to-Cell Variation for Li-ion Batteries. Scientific Reports, 2020, 10, 7182.	3.3	16
374	High-Capacity Sodium Peroxide Based Na–O ₂ Batteries with Low Charge Overpotential via a Nanostructured Catalytic Cathode. ACS Energy Letters, 2018, 3, 276-277.	17.4	15
375	Energy-driven surface evolution in beta-MnO2 structures. Nano Research, 2018, 11, 206-215.	10.4	15
376	Solution Blowing Synthesis of Li-Conductive Ceramic Nanofibers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16200-16208.	8.0	15
377	Hybrid Li-lon and Li-O2 Battery Enabled by Oxyhalogen-Sulfur Electrochemistry. Joule, 2018, 2, 2381-2392.	24.0	14
378	Vacancyâ€Enabled O3 Phase Stabilization for Manganeseâ€Rich Layered Sodium Cathodes. Angewandte Chemie, 2021, 133, 8339-8348.	2.0	14

#	Article	IF	Citations
379	Pushing Lithium–Sulfur Batteries towards Practical Working Conditions through a Cathode–Electrolyte Synergy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
380	Novel functionalized electrolyte for MCMB/Li1.156Mn1.844O4 lithium-ion cells. Energy and Environmental Science, 2011, 4, 4567.	30.8	13
381	Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li–O ₂ Battery. Energy Technology, 2014, 2, 348-354.	3.8	13
382	Highâ€Speed Fabrication of Lithiumâ€lon Battery Electrodes by UVâ€Curing. Energy Technology, 2015, 3, 469-475.	3.8	13
383	Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery. Energies, 2015, 8, 529-548.	3.1	13
384	Interfacial reactions in lithium batteries. Journal Physics D: Applied Physics, 2017, 50, 303001.	2.8	13
385	Methacrylated gelatin-embedded fabrication of 3D graphene-supported Co3O4 nanoparticles for water splitting. Nanoscale, 2019, 11, 6866-6875.	5.6	13
386	Local spring effect in titanium-based layered oxides. Energy and Environmental Science, 2020, 13, 4371-4380.	30.8	13
387	Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fastâ€Charging Zn Battery Chemistry. Angewandte Chemie, 2022, 134, .	2.0	13
388	Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study. Nano Research, 2017, 10, 4327-4336.	10.4	12
389	A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Freeâ€Energy Relationship in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 10701-10705.	2.0	12
390	Optimization of oxygen electrode combined with soluble catalyst to enhance the performance of lithium–oxygen battery. Energy Storage Materials, 2020, 28, 73-81.	18.0	12
391	A generalized method for high throughput in-situ experiment data analysis: An example of battery materials exploration. Journal of Power Sources, 2015, 279, 246-251.	7.8	11
392	<i>In Situ</i> Formed Ir ₃ Li Nanoparticles as Active Cathode Material in Li–Oxygen Batteries. Journal of Physical Chemistry A, 2019, 123, 10047-10056.	2.5	11
393	Molecular Engineering toward Stabilized Interface: An Electrolyte Additive for High-Performance Li-Ion Battery. Journal of the Electrochemical Society, 2014, 161, A2262-A2267.	2.9	10
394	Probing cation intermixing in Li ₂ SnO ₃ . RSC Advances, 2016, 6, 31559-31564.	3.6	10
395	Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical Highâ€Energy Liâ€S Batteries. Angewandte Chemie, 2020, 132, 17787-17793.	2.0	10
396	Solvation Rule for Solidâ€Electrolyte Interphase Enabler in Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 18386-18390.	2.0	10

#	Article	IF	Citations
397	Sustainable existence of solid mercury (Hg) nanoparticles at room temperature and their applications. Chemical Science, 2021, 12, 3226-3238.	7.4	10
398	Complementary Electrolyte Design for Li Metal Batteries in Electric Vehicle Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25879-25889.	8.0	10
399	Molecularâ€Level Insights into the Reactivity of Siloxaneâ€Based Electrolytes at a Lithiumâ€Metal Anode. ChemPhysChem, 2014, 15, 2077-2083.	2.1	9
400	Batteries: The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries (Adv. Mater. 9/2012). Advanced Materials, 2012, 24, 1276-1276.	21.0	8
401	Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries. Angewandte Chemie, 2020, 132, 23178-23182.	2.0	8
402	Atomistic Insights of Irreversible Li ⁺ Intercalation in MnO ₂ Electrode. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
403	Smart Polymeric Cathode Material with Intrinsic Overcharge Protection Based on a 2,5â€Diâ€∢i>tertà6€butyl―1,4â€dimethoxybenzene Core Structure. Advanced Functional Materials, 2012, 22 4485-4492.	,14.9	7
404	Evidence of Morphological Change in Sulfur Cathodes upon Irradiation by Synchrotron X-rays. ACS Energy Letters, 2022, 7, 577-582.	17.4	7
405	Exploring the charge reactions in a Li–O ₂ system with lithium oxide cathodes and nonaqueous electrolytes. Journal of Materials Chemistry A, 2019, 7, 15615-15620.	10.3	6
406	E-fuel system: a conceptual breakthrough for energy storage. Science Bulletin, 2019, 64, 227-228.	9.0	5
407	Mesocrystallizing Nanograins for Enhanced Li + Storage. Advanced Energy Materials, 2021, 11, 2100503.	19.5	5
408	Tunning the linkage of structure units to enable stable spinel-based cathode in the wide potential window. Nano Energy, 2021, 89, 106457.	16.0	5
409	Advanced Lithium Batteries for Automobile Applications at ABAA-9. ACS Energy Letters, 2017, 2, 1628-1631.	17.4	4
410	Impacts of Dissolved Ni ²⁺ on the Solid Electrolyte Interphase on a Graphite Anode. Angewandte Chemie, 2022, 134, .	2.0	4
411	Microstructural Characterization of Air Electrode Architectures in Lithium-Oxygen Batteries. Microscopy and Microanalysis, 2015, 21, 1373-1374.	0.4	3
412	Electronic properties of Ir3Li and ultra-nanocrystalline lithium superoxide formation. Nano Energy, 2021, 90, 106549.	16.0	3
413	Atomistic Insights of Irreversible Li ⁺ Intercalation in MnO ₂ Electrode. Angewandte Chemie, 2022, 134, e202113420.	2.0	3
414	Microstructural Evolution in Transition-metal-oxide Cathode Materials for Lithium-Ion Batteries. Microscopy and Microanalysis, 2016, 22, 1300-1301.	0.4	2

#	Article	IF	Citations
415	Protocol of Electrochemical Test and Characterization of Aprotic Li-O ₂ Battery. Journal of Visualized Experiments, 2016, , .	0.3	2
416	Insights into the Performance Degradation of Oxygen-Type Manganese-Rich Layered Oxide Cathodes for High-Voltage Sodium-Ion Batteries. ACS Applied Energy Materials, $2018, \ldots$	5.1	2
417	Impact of alginate and fluoroethylene carbonate on the electrochemical performance of SiO–SnCoC anode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 397-405.	2.5	2
418	Lithium Anodes: Understanding the Reactivity of a Thin Li _{1.5} Al _{Solidâ€State Li_{1.5}Al_{Solidâ€State Electrolyte toward Metallic Lithium Anode (Adv. Energy Mater. 32/2020). Advanced Energy Materials, 2020, 10, 2070136.}}	19.5	2
419	Computational study of the adsorption of bimetallic clusters on alumina substrate. Surface Science, 2020, 700, 121682.	1.9	2
420	Understanding the Effect of Solid Electrocatalysts on Achieving Highly Energyâ€Efficient Lithium–Oxygen Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100045.	5.8	2
421	Pushing Lithium–Sulfur Batteries towards Practical Working Conditions through a Cathode–Electrolyte Synergy. Angewandte Chemie, 2022, 134, .	2.0	2
422	Lithiumâ€lon Batteries: A Rigid Naphthalenediimide Triangle for Organic Rechargeable Lithiumâ€lon Batteries (Adv. Mater. 18/2015). Advanced Materials, 2015, 27, 2948-2948.	21.0	1
423	Tunnel Intergrowth Structures in Manganese Dioxide and Their Influence on Ion Storage. Microscopy and Microanalysis, 2018, 24, 1500-1501.	0.4	1
424	TEM Studies on the Role of Local Chemistry and Atomic Structure in Battery Materials. Microscopy and Microanalysis, 2020, 26, 148-149.	0.4	1
425	Tuning working potential of silicon-phosphorus anode via microstructure control for high-energy lithium-ion batteries. Journal of Solid State Electrochemistry, 0, , .	2.5	1
426	Safety Characteristics of the Li4Ti5O12/LiMn2O4 Li-lon Battery. Materials Research Society Symposia Proceedings, 2006, 972, 1.	0.1	0
427	Exploring Lithium-ion Battery Performance through in situ Characterization. Microscopy and Microanalysis, 2015, 21, 1541-1542.	0.4	0
428	Frontispiece: Implications of the Unpaired Spins in Li-O2Battery Chemistry and Electrochemistry: A Minireview. ChemPlusChem, 2015, 80, n/a-n/a.	2.8	0
429	Investigating Side Reactions and Coating Effects on High Voltage Layered Cathodes for Lithium Ion Batteries. Microscopy and Microanalysis, 2016, 22, 1312-1313.	0.4	0
430	Investigation of the Effect of Graphene-encapsulation on the O2 Release Phenomenon from LixCoO2, Studied by In-situ Heating STEM/EELS. Microscopy and Microanalysis, 2018, 24, 1626-1627.	0.4	0
431	Lithiumâ€lon Batteries: Cooling Induced Surface Reconstruction during Synthesis of Highâ€Ni Layered Oxides (Adv. Energy Mater. 43/2019). Advanced Energy Materials, 2019, 9, 1970173.	19.5	0

Titelbild: Cation Additive Enabled Rechargeable LiOHâ€Based Lithium–Oxygen Batteries (Angew. Chem.) Tj ETQq0,0 0 rgBT/Overlock

25

432

#	Article	IF	CITATIONS
433	Nickel-based Cathode for Li-ion Batteries. , 2020, , 204-226.		0
434	Innenrýcktitelbild: Impacts of Dissolved Ni ²⁺ on the Solid Electrolyte Interphase on a Graphite Anode (Angew. Chem. 30/2022). Angewandte Chemie, 2022, 134, .	2.0	0
435	Recent progress in fundamental understanding of selenium-doped sulfur cathodes during charging and discharging with various electrolytes., 2022,, 235-260.		0