
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2014699/publications.pdf Version: 2024-02-01

ΔΝΙΛ ΡΡΙΜΟ

#	Article	IF	CITATIONS
1	Catalytic transformation of the marine polysaccharide ulvan into rare sugars, tartaric and succinic acids. Catalysis Today, 2022, 383, 345-357.	4.4	15
2	Doped microporous graphitic carbons as metal-free catalysts for the selective hydrogenation of alkynes to alkenes. Journal of Catalysis, 2022, 405, 355-362.	6.2	8
3	Remarkable Activity of 002 Facet of Ruthenium Nanoparticles Grown on Graphene Films on the Photocatalytic CO ₂ Methanation. Advanced Sustainable Systems, 2022, 6, .	5.3	7
4	Tridimensional N, P-Codoped Carbon Sponges as Highly Selective Catalysts for Aerobic Oxidative Coupling of Benzylamine. ACS Omega, 2022, 7, 11092-11100.	3.5	5
5	Nanometer-thick defective graphene films decorated with oriented ruthenium nanoparticles. Higher activity of 101 vs 002 plane for silane-alcohol coupling and hydrogen transfer reduction. Journal of Catalysis, 2022, 407, 342-352.	6.2	4
6	High C2-C4 selectivity in CO2 hydrogenation by particle size control of Co-Fe alloy nanoparticles wrapped on N-doped graphitic carbon. IScience, 2022, 25, 104252.	4.1	6
7	Shaping MOF oxime oxidation catalysts as three-dimensional porous aerogels through structure-directing growth inside chitosan microspheres. Green Chemistry, 2022, 24, 4533-4543.	9.0	16
8	High-current water electrolysis performance of metal phosphides grafted on porous 3D N-doped graphene prepared without using phosphine. Cell Reports Physical Science, 2022, 3, 100873.	5.6	4
9	Aqueous Phase Methanol Reforming Catalyzed by Fe–Cu Alloy Nanoparticles Wrapped on Nitrogen-Doped Graphene. ACS Applied Energy Materials, 2022, 5, 9173-9180.	5.1	4
10	Large area continuous multilayer graphene membrane for water desalination. Chemical Engineering Journal, 2021, 413, 127510.	12.7	20
11	Microporous 3D graphitic carbons obtained by soft templating as carbocatalysts for aerobic oxidation. Applied Catalysis A: General, 2021, 612, 118014.	4.3	3
12	Porous Graphitic Carbons Containing Nitrogen by Structuration of Chitosan with Pluronic P123. ACS Applied Materials & Interfaces, 2021, 13, 13499-13507.	8.0	8
13	Engineering hydrogenation active sites on graphene oxide and N-doped graphene by plasma treatment. Applied Catalysis B: Environmental, 2021, 287, 119962.	20.2	12
14	Co–Fe Clusters Supported on N-Doped Graphitic Carbon as Highly Selective Catalysts for Reverse Water Gas Shift Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 9264-9272.	6.7	16
15	Co–Fe Nanoparticles Wrapped on N-Doped Graphitic Carbons as Highly Selective CO ₂ Methanation Catalysts. ACS Applied Materials & Interfaces, 2021, 13, 36976-36981.	8.0	12
16	Band Engineering of Semiconducting Microporous Graphitic Carbons by Phosphorous Doping: Enhancing of Photocatalytic Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 48753-48763.	8.0	10
17	Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions. Journal of Catalysis, 2020, 390, 135-149.	6.2	5
18	Superior Electrocatalytic Activity of MoS2-Graphene as Superlattice. Nanomaterials, 2020, 10, 839.	4.1	11

#	Article	IF	CITATIONS
19	Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins. ACS Applied Energy Materials, 2020, 3, 6623-6632.	5.1	10
20	Templateless Synthesis of Ultraâ€Microporous 3D Graphitic Carbon from Cyclodextrins and Their Use as Selective Catalyst for Oxygen Activation. Small Methods, 2020, 4, 1900721.	8.6	10
21	Nâ€Đoped Defective Graphene from Biomass as Catalyst for CO ₂ Hydrogenation to Methane. ChemCatChem, 2019, 11, 985-990.	3.7	39
22	Nitrogen-doped graphene as metal free basic catalyst for coupling reactions. Journal of Catalysis, 2019, 376, 238-247.	6.2	18
23	Quality Improvement of Few-Layers Defective Graphene from Biomass and Application for H2 Generation. Nanomaterials, 2019, 9, 895.	4.1	26
24	Palladium Supported on Porous Chitosan–Graphene Oxide Aerogels as Highly Efficient Catalysts for Hydrogen Generation from Formate. Molecules, 2019, 24, 3290.	3.8	19
25	A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm \tilde{A} —) Tj ETQq1 \tilde{A} Nanoscale, 2019, 11, 2981-2990.	1 0.784314 5.6	ł rgBT /Over 9
26	Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation. RSC Advances, 2019, 9, 99-106.	3.6	20
27	Polystyrene as Graphene Film and 3D Graphene Sponge Precursor. Nanomaterials, 2019, 9, 101.	4.1	14
28	3D defective graphenes with subnanometric porosity obtained by soft-templating following zeolite procedures. Nanoscale Advances, 2019, 1, 4827-4833.	4.6	5
29	Adjusting the Structure and Electronic Properties of Carbons for Metalâ€Free Carbocatalysis of Organic Transformations. Advanced Materials, 2019, 31, e1805719.	21.0	67
30	CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene. Applied Catalysis B: Environmental, 2019, 245, 351-359.	20.2	56
31	Defective graphene as a metal-free catalyst for chemoselective olefin hydrogenation by hydrazine. Catalysis Science and Technology, 2018, 8, 1589-1598.	4.1	13
32	Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source. Nanoscale, 2018, 10, 4391-4397.	5.6	19
33	Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry, 2018, 20, 2611-2623.	9.0	21
34	Bimetallic Oriented (Au/Cu ₂ O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu ₂ O Graphene‣upported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry, 2018, 2018, 6185-6190.	2.4	3
35	Selective photocatalytic benzene hydroxylation to phenol using surface-modified Cu ₂ O supported on graphene. Journal of Materials Chemistry A, 2018, 6, 19782-19787.	10.3	29
36	One-Step Preparation of Large Area Films of Oriented MoS2 Nanoparticles on Multilayer Graphene and Its Electrocatalytic Activity for Hydrogen Evolution. Materials, 2018, 11, 168.	2.9	6

#	Article	IF	CITATIONS
37	Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions. Topics in Catalysis, 2018, 61, 1449-1457.	2.8	3
38	Enhanced Activity of Ag Nanoplatelets on Few Layers of Graphene Film with Preferential Orientation for Dehydrogenative Silane–Alcohol Coupling. ACS Sustainable Chemistry and Engineering, 2017, 5, 2400-2406.	6.7	11
39	Chitosan–graphene oxide films and CO 2 -dried porous aerogel microspheres: Interfacial interplay and stability. Carbohydrate Polymers, 2017, 167, 297-305.	10.2	84
40	Aqueous phase reforming of glycerol using doped graphenes as metal-free catalysts. Green Chemistry, 2017, 19, 3061-3068.	9.0	22
41	Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative Câ^'N Coupling of Aromatic Nâ^'H Compounds and Amides. ChemCatChem, 2017, 9, 3003-3012.	3.7	14
42	Graphenes as Metal-Free Catalysts with Engineered Active Sites. Journal of Physical Chemistry Letters, 2017, 8, 264-278.	4.6	45
43	Graphene as Metalâ€Free Catalyst for Aqueous Phase Reforming of Ethylene Glycol. ChemistrySelect, 2017, 2, 6338-6343.	1.5	3
44	Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 2017, 201, 582-590.	20.2	63
45	Oneâ€Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 607-612.	13.8	37
46	Graphene from Alginate Pyrolysis as a Metalâ€Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 2016, 9, 1565-1569.	6.8	62
47	Isotropic and Oriented Copper Nanoparticles Supported on Graphene as Aniline Guanylation Catalysts. ACS Catalysis, 2016, 6, 3863-3869.	11.2	22
48	Nanosized Copper Supported on Graphene as Catalyst for the Oxidative C-O Cross-Coupling of Phenols. ChemistrySelect, 2016, 1, 157-162.	1.5	9
49	Oriented Pt Nanoparticles Supported on Few-Layers Graphene as Highly Active Catalyst for Aqueous-Phase Reforming of Ethylene Glycol. ACS Applied Materials & Interfaces, 2016, 8, 33690-33696.	8.0	17
50	111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 2016, 7, 11819.	12.8	114
51	Copper nanoparticles supported on graphene as an efficient catalyst for A ₃ coupling of benzaldehydes. Catalysis Science and Technology, 2016, 6, 4306-4317.	4.1	44
52	Production of C4 and C5 alcohols from biomass-derived materials. Green Chemistry, 2016, 18, 2579-2597.	9.0	147
53	Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres. Carbohydrate Polymers, 2016, 146, 353-361.	10.2	49
54	Graphene oxide as a metal-free catalyst for oxidation of primary amines to nitriles by hypochlorite. Chemical Communications, 2016, 52, 1839-1842.	4.1	42

#	Article	IF	CITATIONS
55	Nickel nanoparticles supported on graphene as catalysts for aldehyde hydrosilylation. Journal of Molecular Catalysis A, 2016, 412, 13-19.	4.8	28
56	Graphenes as Efficient Metalâ€Free Fenton Catalysts. Chemistry - A European Journal, 2015, 21, 11966-11971.	3.3	87
57	Copper Nanoparticles Stabilized in a Porous Chitosan Aerogel as a Heterogeneous Catalyst for Câ`S Crossâ€coupling. ChemCatChem, 2015, 7, 3307-3315.	3.7	66
58	Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 2015, 65, 10-13.	3.3	45
59	Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water–ethanol mixture. Green Chemistry, 2015, 17, 1893-1898.	9.0	66
60	Boron Nitride Nanoplatelets as a Solid Radical Initiator for the Aerobic Oxidation of Thiophenol to Diphenyldisulfide. ChemCatChem, 2015, 7, 776-780.	3.7	12
61	Organophosphonate bridged anatase mesocrystals: low temperature crystallization, thermal growth and hydrogen photo-evolution. Dalton Transactions, 2015, 44, 15544-15556.	3.3	20
62	High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 2015, 6, 8561.	12.8	63
63	p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 2015, 11, 970-975.	10.0	28
64	Innovative preparation of MoS2–graphene heterostructures based on alginate containing (NH4)2MoS4 and their photocatalytic activity for H2 generation. Carbon, 2015, 81, 587-596.	10.3	45
65	Chitosanâ€Templated Synthesis of Few‣ayers Boron Nitride and its Unforeseen Activity as a Fenton Catalyst. Chemistry - A European Journal, 2015, 21, 324-330.	3.3	25
66	Copper Nanoparticles Supported on Doped Graphenes as Catalyst for the Dehydrogenative Coupling of Silanes and Alcohols. Angewandte Chemie - International Edition, 2014, 53, 12581-12586.	13.8	33
67	Zeolites as catalysts in oil refining. Chemical Society Reviews, 2014, 43, 7548-7561.	38.1	492
68	High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 2014, 68, 777-783.	10.3	78
69	Nâ€Doped Graphene Derived from Biomass as a Visible‣ight Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 2014, 20, 187-194.	3.3	136
70	Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 2014, 4, 497-504.	11.2	37
71	Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 2014, 5, 5291.	12.8	208
72	Doped Graphene as a Metalâ€Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 2013, 19, 7547-7554.	3.3	138

#	Article	IF	CITATIONS
73	Solar Photocatalysis for Environment Remediation. , 2013, , 145-165.		5
74	Supported Gold Nanoparticles as Heterogeneous Catalysts. , 2013, , 425-449.		1
75	Pâ€Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water–Methanol Mixtures. Angewandte Chemie - International Edition, 2013, 52, 11813-11816.	13.8	245
76	Alginate as Template in the Preparation of Active Titania Photocatalysts. ChemCatChem, 2013, 5, 513-518.	3.7	28
77	Preparation of Graphene Quantum Dots from Pyrolyzed Alginate. Langmuir, 2013, 29, 6141-6146.	3.5	72
78	CO ₂ â€Fixation on Aliphatic α,ωâ€Diamines to Form Cyclic Ureas, Catalyzed by Ceria Nanoparticles that were Obtained by Templating with Alginate. ChemCatChem, 2013, 5, 1020-1023.	3.7	33
79	Selective Hydrogenation of 1,3â€Butadiene and 1â€Butyne over a Rh/Chitosan Catalyst Investigated by using Parahydrogenâ€Induced Polarization. ChemCatChem, 2012, 4, 2031-2035.	3.7	36
80	Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 21373.	6.7	74
81	From Biomass Wastes to Highly Efficient CO ₂ Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 2012, 5, 2207-2214.	6.8	93
82	From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 2012, 48, 9254.	4.1	253
83	Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium. Advanced Synthesis and Catalysis, 2012, 354, 1707-1711.	4.3	72
84	Titania supported gold nanoparticles as photocatalyst. Physical Chemistry Chemical Physics, 2011, 13, 886-910.	2.8	652
85	Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2. Chemical Communications, 2011, 47, 3613.	4.1	147
86	Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO ₂ Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 2011, 133, 6930-6933.	13.7	428
87	Zeolites and Mesoporous Aluminosilicates as Solid Acid Catalysts. , 2011, , 449-478.		1
88	Efficient and Highly Selective Aqueous Oxidation of Sulfides to Sulfoxides at Room Temperature Catalysed by Supported Iron Oxide Nanoparticles on SBAâ€15. Advanced Synthesis and Catalysis, 2011, 353, 2060-2066.	4.3	77
89	Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry - A European Journal, 2011, 17, 7940-7946.	3.3	46
90	Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon–carbon bond formation. Chemical Communications, 2010, 46, 5593.	4.1	127

#	Article	IF	CITATIONS
91	Functionalized Chitosan as a Green, Recyclable, Biopolymer‣upported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie - International Edition, 2009, 48, 5916-5920.	13.8	193
92	Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction. Chemistry of Materials, 2009, 21, 621-627.	6.7	96
93	Gold Nanoparticles in Organic Capsules: A Supramolecular Assembly of Gold Nanoparticles and Cucurbituril. Chemistry - A European Journal, 2007, 13, 6359-6364.	3.3	78
94	Pd nanoparticles embedded in sponge-like porous silica as a Suzuki–Miyaura catalyst: Similarities and differences with homogeneous catalysts. Journal of Catalysis, 2007, 251, 345-353.	6.2	104
95	Palladium and copper supported on mixed oxides derived from hydrotalcite as reusable solid catalysts for the Sonogashira coupling. Journal of Catalysis, 2006, 241, 123-131.	6.2	57
96	A test reaction to assess the presence of Brönsted and the softness/hardness of Lewis acid sites in palladium supported catalysts. New Journal of Chemistry, 2004, 28, 361-365.	2.8	19
97	Alkali-exchanged sepiolites containing palladium as bifunctional (basic sites and noble metal) catalysts for the Heck and Suzuki reactions. Applied Catalysis A: General, 2004, 257, 77-83.	4.3	83
98	Primary amido and phosphido complexes of zinc: potential precursors to heterometallic arrangements. Inorganica Chimica Acta, 2003, 354, 41-48.	2.4	7
99	Basic zeolites containing palladium as bifunctional heterogeneous catalysts for the Heck reaction. Applied Catalysis A: General, 2003, 247, 41-49.	4.3	83
100	Band gap alignment of structured microporous graphitic carbons by N doping and its influence on photocatalytic overall water splitting. Sustainable Energy and Fuels, 0, , .	4.9	2
101	Nanometricâ€ŧhick metalâ€free hâ€boron nitride/graphene films as base catalyst for the synthesis of benzoxazoles. ChemCatChem, 0, , .	3.7	2