
Zhan-Wen Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2014482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The first data release (DR1) of the LAMOST regular survey. Research in Astronomy and Astrophysics, 2015, 15, 1095-1124.	1.7	565
2	LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — The survey's science plan. Research in Astronomy and Astrophysics, 2012, 12, 735-754.	1.7	404
3	Progenitors of type la supernovae. New Astronomy Reviews, 2012, 56, 122-141.	12.8	300
4	A possible criterion for envelope ejection in asymptotic giant branch or first giant branch stars. Monthly Notices of the Royal Astronomical Society, 1994, 270, 121-130.	4.4	263
5	Zero-age main-sequence radii and luminosities as analytic functions of mass and metallicity. Monthly Notices of the Royal Astronomical Society, 1996, 281, 257-262.	4.4	196
6	The formation of double degenerates and related objects. Monthly Notices of the Royal Astronomical Society, 1998, 296, 1019-1040.	4.4	180
7	A wide star–black-hole binary system from radial-velocity measurements. Nature, 2019, 575, 618-621.	27.8	142
8	Low- and intermediate-mass close binary evolution and the initial-final mass relation. Monthly Notices of the Royal Astronomical Society, 2002, 319, 215-222.	4.4	130
9	OBSERVATIONS OF DOPPLER BOOSTING IN KEPLER LIGHT CURVES. Astrophysical Journal, 2010, 715, 51-58.	4.5	130
10	FORMATION OF BLACK WIDOWS AND REDBACKS—TWO DISTINCT POPULATIONS OF ECLIPSING BINARY MILLISECOND PULSARS. Astrophysical Journal, 2013, 775, 27.	4.5	124
11	ADIABATIC MASS LOSS IN BINARY STARS. I. COMPUTATIONAL METHOD. Astrophysical Journal, 2010, 717, 724-738.	4.5	89
12	The progenitors of Type Ia supernovae with long delay times. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2729-2738.	4.4	88
13	EVOLVING TO TYPE Ia SUPERNOVAE WITH SHORT DELAY TIMES. Astrophysical Journal, 2009, 701, 1540-1546.	4.5	86
14	Mass transfer from a giant star to a main-sequence companion and its contribution to long-orbital-period blue stragglers. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1416-1430.	4.4	85
15	ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH. Astrophysical Journal, 2015, 812, 40.	4.5	73
16	Inclusion of binaries in evolutionary population synthesis. Monthly Notices of the Royal Astronomical Society, 2005, 357, 1088-1103.	4.4	57
17	Formation of Extremely Low-mass White Dwarfs in Double Degenerates. Astrophysical Journal, 2019, 871, 148.	4.5	57
18	The evolutionary status of W Ursae Majoris-type systems. Monthly Notices of the Royal Astronomical Society, 2008, 387, 97-104.	4.4	52

#	Article	IF	CITATIONS
19	The orbital periods of subdwarf B binaries produced by the first stable Roche Lobe overflow channel. Monthly Notices of the Royal Astronomical Society, 2013, 434, 186-193.	4.4	52
20	Binary Population Synthesis. Research in Astronomy and Astrophysics, 2020, 20, 161.	1.7	50
21	The Impact of Type Ia Supernova Explosions on the Companion in a Binary System. Publication of the Astronomical Society of Japan, 2007, 59, 835-840.	2.5	49
22	Primordial binary evolution and blue stragglers. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1822-1836.	4.4	49
23	He-accreting carbon–oxygen white dwarfs and Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1593-1599.	4.4	49
24	BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES. Astrophysical Journal, Supplement Series, 2014, 215, 2.	7.7	47
25	The formation of bipolar planetary nebulae and close white dwarf binaries. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	44
26	On the formation of single and binary helium-rich subdwarf O stars. Monthly Notices of the Royal Astronomical Society, 2011, 410, 984-993.	4.4	43
27	HOT SUBDWARF STARS OBSERVED IN LAMOST DR1—ATMOSPHERIC PARAMETERS FROM SINGLE-LINED SPECTRA. Astrophysical Journal, 2016, 818, 202.	4.5	38
28	Carbon Stars Identified from LAMOST DR4 Using Machine Learning. Astrophysical Journal, Supplement Series, 2018, 234, 31.	7.7	37
29	Low- and intermediate-mass close binary evolution and the initial-final mass relation - III. Conservative case with convective overshooting and non-conservative case without overshooting. Monthly Notices of the Royal Astronomical Society, 2003, 341, 662-668.	4.4	36
30	Adiabatic Mass Loss in Binary Stars. III. From the Base of the Red Giant Branch to the Tip of the Asymptotic Giant Branch. Astrophysical Journal, 2020, 899, 132.	4.5	35
31	Evolutionary population synthesis for binary stellar population at high spectral resolution: integrated spectral energy distributions and absorption-feature indices. Monthly Notices of the Royal Astronomical Society, 2005, 364, 503-514.	4.4	34
32	Binary coalescence from case A evolution: mergers and blue stragglers. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1263-1276.	4.4	33
33	The orbital period–mass ratio relation of wide sdB+MS binaries and its application to the stability of RLOF. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4592-4605.	4.4	33
34	Effects of chemical composition and thermohaline mixing on the accreting components for low-mass close binaries: application to blue stragglers. Monthly Notices of the Royal Astronomical Society, 2004, 355, 1182-1195.	4.4	32
35	DECODING SPECTRAL ENERGY DISTRIBUTIONS OF DUST-OBSCURED STARBURST-ACTIVE GALACTIC NUCLEUS. Astrophysical Journal, 2012, 749, 123.	4.5	30
36	KIC 8262223: A Post-mass Transfer Eclipsing Binary Consisting of a Delta Scuti Pulsator and a Helium White Dwarf Precursor. Astrophysical Journal, 2017, 837, 114.	4.5	30

#	Article	IF	CITATIONS
37	Formation of millisecond pulsars with helium white dwarfs, ultra-compact X-ray binaries, and gravitational wave sources. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3540-3551.	4.4	30
38	Hot Subdwarf Stars Observed in Gaia DR2 and LAMOST DR5. Astrophysical Journal, 2019, 881, 7.	4.5	27
39	Formation of hot subdwarf B stars with neutron star components. Astronomy and Astrophysics, 2018, 618, A14.	5.1	25
40	Gravitational-wave Radiation of Double Degenerates with Extremely Low-mass White Dwarf Companions. Astrophysical Journal, 2020, 893, 2.	4.5	25
41	The Thermal Equilibrium Mass-loss Model and Its Applications in Binary Evolution. Astrophysical Journal, Supplement Series, 2020, 249, 9.	7.7	25
42	A New Hyper-runaway Star Discovered from LAMOST and Gaia: Ejected Almost in the Galactic Rotation Direction. Astronomical Journal, 2018, 156, 87.	4.7	24
43	Comprehensive models of novae at metallicity ZÂ= 0.02 and ZÂ= 10â^'4. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1678-1692.	4.4	24
44	A Comprehensive Bayesian Discrimination of the Simple Stellar Population Model, Star Formation History, and Dust Attenuation Law in the Spectral Energy Distribution Modeling of Galaxies. Astrophysical Journal, Supplement Series, 2019, 240, 3.	7.7	24
45	Overview of the LAMOST survey in the first decade. Innovation(China), 2022, 3, 100224.	9.1	24
46	Distribution of ⁵⁶ Ni Yields of Type Ia Supernovae and its Implication for Progenitors. Research in Astronomy and Astrophysics, 2008, 8, 71-80.	1.1	22
47	A likely candidate of type la supernova progenitors: the X-ray pulsating companion of the hot subdwarf HD 49798. Research in Astronomy and Astrophysics, 2010, 10, 681-688.	1.7	22
48	A possible formation channel for blue hook stars in globular clusters. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2741-2749.	4.4	22
49	Modelling nova populations in galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2916-2927.	4.4	22
50	The Formation of EL CVn-type Binaries. Monthly Notices of the Royal Astronomical Society, 0, , stx115.	4.4	21
51	Ultracompact X-ray binaries with He star companions. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4654-4666.	4.4	21
52	The detached-binary channel for the formation of contact binaries. Monthly Notices of the Royal Astronomical Society, 2014, 438, 859-868.	4.4	19
53	The Interaction of Type lax Supernova Ejecta with a Helium Companion Star. Astrophysical Journal, 2020, 898, 12.	4.5	19
54	Hot Subdwarf Atmospheric Parameters, Kinematics, and Origins Based on 1587 Hot Subdwarf Stars Observed in Gaia DR2 and LAMOST DR7. Astrophysical Journal, Supplement Series, 2021, 256, 28.	7.7	18

#	Article	IF	CITATIONS
55	Birthrates and delay times of Type Ia supernovae. Science China: Physics, Mechanics and Astronomy, 2010, 53, 586-590.	5.1	17
56	WD+RG systems as the progenitors of type Ia supernovae. Research in Astronomy and Astrophysics, 2010, 10, 235-243.	1.7	16
57	A SUPER-EDDINGTON WIND SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE. Astrophysical Journal Letters, 2013, 778, L32.	8.3	16
58	Energy transfer and its effects on the secondaries in W Ursae Majoris type contact binaries. Monthly Notices of the Royal Astronomical Society, 2009, 396, 2176-2182.	4.4	15
59	BINARY INTERACTIONS AS A POSSIBLE SCENARIO FOR THE FORMATION OF MULTIPLE STELLAR POPULATIONS IN GLOBULAR CLUSTERS. Astrophysical Journal, 2014, 789, 88.	4.5	15
60	The X-ray/radio and UV luminosity expected from symbiotic systems as the progenitor of SNe Ia. Astronomy and Astrophysics, 2016, 588, A88.	5.1	15
61	The Early-type Stars from the LAMOST Survey: Atmospheric Parameters. Astrophysical Journal, Supplement Series, 2021, 257, 54.	7.7	14
62	The Common Envelope Evolution Outcome—A Case Study on Hot Subdwarf B Stars. Astrophysical Journal, 2022, 933, 137.	4.5	14
63	Contribution of Primordial Binary Evolution to the Two Blue-straggler Sequences in Globular Cluster M30. Astrophysical Journal, 2017, 849, 100.	4.5	13
64	Stellar adiabatic mass loss model and applications. Astrophysics and Space Science, 2010, 329, 243-248.	1.4	12
65	SNe Ia as a cosmological probe. International Journal of Modern Physics D, 2015, 24, 1530029.	2.1	12
66	Blue Large-amplitude Pulsators: The Possible Surviving Companions of Type Ia Supernovae. Astrophysical Journal, 2020, 903, 100.	4.5	12
67	Hot subdwarf B stars with neutron star components. Astronomy and Astrophysics, 2020, 634, A126.	5.1	10
68	The Relation between Outburst Rate and Orbital Period in Low-mass X-Ray Binary Transients. Astrophysical Journal, 2019, 870, 126.	4.5	9
69	TYCÂ2990-127-1: An Algol-type SB2 binary system of subgiant and red giant with a probable ongoing mass-transfer. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4295-4307.	4.4	9
70	Identification of New Classical Be Stars from the LAMOST Medium Resolution Survey. Astrophysical Journal, Supplement Series, 2022, 260, 35.	7.7	8
71	A Roche lobe-filling hot subdwarf and white dwarf binary: possible detection of an ejected common envelope. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3370-3382.	4.4	8
72	Formation of the Double White Dwarf Binary PTF J0533+0209 through Stable Mass Transfer?. Astrophysical Journal, 2022, 925, 89.	4.5	7

#	Article	IF	CITATIONS
73	Investigating the Stability of Mass Transfer in Neutron Star–helium White Dwarf Binaries. Astrophysical Journal, 2022, 930, 134.	4.5	7
74	Mass-ratio Distribution of Binaries from the LAMOST-MRS Survey. Astrophysical Journal, 2022, 933, 119.	4.5	7
75	The first symbiotic stars from the LAMOST survey. Research in Astronomy and Astrophysics, 2015, 15, 1332-1341.	1.7	6
76	The Maximum Accreted Mass of Recycled Pulsars. Astrophysical Journal, 2021, 922, 158.	4.5	6
77	Why Are Peculiar Type Ia Supernovae More Likely to Show the Signature of a Single-degenerate Model?. Astrophysical Journal Letters, 2018, 855, L18.	8.3	5
78	Simulating kilonovae in the $\hat{\rm b}$ CDM universe. Monthly Notices of the Royal Astronomical Society, 2020, 498, 926-939.	4.4	4
79	WD mass and orbital period relation of sdBÂ+ÂHe WD binaries. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3514-3519.	4.4	4
80	Long-term Evolution of Postexplosion Helium-star Companions of Type Iax Supernovae. Astrophysical Journal, 2022, 933, 65.	4.5	4
81	Editorial: special issue on hot subdwarf stars. Astrophysics and Space Science, 2010, 329, 1-2.	1.4	3
82	The C/O ratio of He-accreting carbon-oxygen white dwarfs and type Ia supernovae. Research in Astronomy and Astrophysics, 2020, 20, 003.	1.7	3
83	Impact of mass transfer schemes on mass–orbital period relation. Monthly Notices of the Royal Astronomical Society, 2021, 502, 383-389.	4.4	3
84	Type Ia supernova ejecta–donor interaction: explosion model comparison. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4078-4086.	4.4	3
85	On the Rotation Properties of a Post-explosion Helium-star Companion in Type Iax Supernovae. Research in Astronomy and Astrophysics, 2022, 22, 075004.	1.7	2
86	Hydrogen and helium shell burning during white dwarf accretion. Research in Astronomy and Astrophysics, 2018, 18, 058.	1.7	1
87	Helium Star Donor Channel to Type Ia Supernovae and Their Surviving Companion Stars. Proceedings of the International Astronomical Union, 2011, 7, 205-208.	0.0	0
88	Far-UV radiation from hot subdwarf stars in early-type galaxies. Proceedings of the International Astronomical Union, 2012, 10, 124-124.	0.0	0
89	The surviving companions in type Ia supernova remnants. Research in Astronomy and Astrophysics, 2017, 17, 083.	1.7	0
90	Bayesian discrimination of the panchromatic spectral energy distribution modelings of galaxies. Proceedings of the International Astronomical Union, 2019, 15, 143-146.	0.0	0

#	Article	IF	CITATIONS
91	LAMOST's view on the Gaia-Sausage-Enceladus merger event. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	0