
Vinod K Tewary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2014231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiscale Green's function for silicene and its application to calculation of the strain field due to a vacancy. MRS Advances, 2021, 6, 734.	0.9	1
2	Semi-discrete Green's function for solution of anisotropic thermal/electrostatic Boussinesq and Mindlin problems: Application to two-dimensional material systems. Engineering Analysis With Boundary Elements, 2020, 110, 56-68.	3.7	4
3	Generalized Green's function molecular dynamics for canonical ensemble simulations. Physical Review E, 2018, 97, 053310.	2.1	6
4	Green's function modeling of response of two-dimensional materials to point probes for scanning probe microscopy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1750-1756.	2.1	5
5	Ullmann-like reactions for the synthesis of complex two-dimensional materials. Nanotechnology, 2016, 27, 442501.	2.6	2
6	Stratified graphene/noble metal systems for low-loss plasmonics applications. Physical Review B, 2013, 87, .	3.2	28
7	Manipulation of graphene's dynamic ripples by local harmonic out-of-plane excitation. Nanotechnology, 2013, 24, 055701.	2.6	23
8	Effect of elastic deformation on frictional properties of few-layer graphene. Physical Review B, 2012, 85, .	3.2	110
9	Atomistic simulation of a graphene-nanoribbon–metal interconnect. Journal of Physics Condensed Matter, 2011, 23, 355006.	1.8	14
10	Phenomenological interatomic potentials for silicon, germanium and their binary alloy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3811-3816.	2.1	6
11	Simulation of lattice strain due to a CNT–metal interface. Nanotechnology, 2011, 22, 085703.	2.6	14
12	Extending the time scale in molecular dynamics simulations: Propagation of ripples in graphene. Physical Review B, 2009, 80, .	3.2	10
13	Singular behavior of the Debye-Waller factor of graphene. Physical Review B, 2009, 79, .	3.2	77
14	Parametric interatomic potential for graphene. Physical Review B, 2009, 79, .	3.2	49
15	Materials informatics: Facilitating the integration of data-driven materials research with education. Jom, 2008, 60, 51-52.	1.9	8
16	Multiscale Green's function for the deflection of graphene lattice. Physical Review B, 2008, 77, .	3.2	12
17	Theory of nuclear resonant inelastic x-ray scattering fromFe57in a single-walled carbon nanotube. Physical Review B, 2007, 75, .	3.2	2
18	Multiscale modeling of point defects in Si-Ge(001) quantum wells. Physical Review B, 2007, 75, .	3.2	10

#	Article	IF	CITATIONS
19	Multiscale model of near-spherical germanium quantum dots in silicon. Nanotechnology, 2007, 18, 105402.	2.6	11
20	Multiscale Modeling of a Germanium Quantum Dot in Silicon. , 2006, , 89-98.		0
21	Green's function-based multiscale modeling of defects in a semi-infinite silicon substrate. International Journal of Solids and Structures, 2005, 42, 4722-4737.	2.7	14
22	NSF NSDL Materials Digital Library & MSE Education. Materials Research Society Symposia Proceedings, 2005, 909, 1.	0.1	1
23	Static responses of a multilayered anisotropic piezoelectric structure to point force and point charge. Smart Materials and Structures, 2004, 13, 175-183.	3.5	5
24	Multiscale Green's-function method for modeling point defects and extended defects in anisotropic solids: Application to a vacancy and free surface in copper. Physical Review B, 2004, 69, .	3.2	27
25	Green's-function method for modeling surface acoustic wave dispersion in anisotropic material systems and determination of material parameters. Wave Motion, 2004, 40, 399-412.	2.0	17
26	Elastostatic Green's function for advanced materials subject to surface loading. Journal of Engineering Mathematics, 2004, 49, 289-304.	1.2	13
27	Continuum Dyson's equation and defect Green's function in a heterogeneous anisotropic solid. Mechanics Research Communications, 2004, 31, 405-414.	1.8	4
28	Three-dimensional Green's functions of steady-state motion in anisotropic half-spaces and bimaterials. Engineering Analysis With Boundary Elements, 2004, 28, 1069-1082.	3.7	27
29	Formation of a surface quantum dot near laterally and vertically neighboring dots. Physical Review B, 2003, 68, .	3.2	9
30	Multiscale Modeling of Mechanical Response of Quantum Nanostructures. Materials Research Society Symposia Proceedings, 2003, 778, 921.	0.1	0
31	Effects of Laterally and Vertically Neighboring Quantum Dots on Formation of a New Quantum Dot. Materials Research Society Symposia Proceedings, 2003, 775, 9501.	0.1	0
32	Change in low-temperature thermodynamic functions of a semiconductor due to a quantum dot. Physical Review B, 2002, 66, .	3.2	4
33	Theory of elastic wave propagation in anisotropic film on anisotropic substrate: TiN film on single-crystal Si. Journal of the Acoustical Society of America, 2002, 112, 925-935.	1.1	14
34	Multiscale Modeling of Point Defects and Free Surfaces in Semi-infinite Solids. Materials Research Society Symposia Proceedings, 2002, 731, 991.	0.1	0
35	Green's Function Method for Calculation of Strain Field Due to a Quantum Dot in a Semi-Infinite Anisotropic Solid. Materials Research Society Symposia Proceedings, 2002, 727, 1.	0.1	1
36	Surface acoustic wave methods to determine the anisotropic elastic properties of thin films*. Measurement Science and Technology, 2001, 12, 1486-1494.	2.6	58

#	Article	IF	CITATIONS
37	Greens functions for boundary element analysis of anisotropic bimaterials. Engineering Analysis With Boundary Elements, 2001, 25, 279-288.	3.7	34
38	Green's function for steady-state heat conduction in a bimaterial composite solid. Computational Mechanics, 2000, 25, 627-634.	4.0	13
39	Lattice-statics model for edge dislocations in crystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 1445-1452.	0.6	5
40	Inversion of elastic waveform data in anisotropic solids using the delta-function representation of the Acoustical Society of America, 1998, 104, 1716-1719.	1.1	4
41	Lattice Statics Green's Function for Modeling of Dislocations in Crystals. Materials Research Society Symposia Proceedings, 1998, 529, 15.	0.1	Ο
42	Boundary integral equation formulation for Interface cracks in anisotropic materials. Computational Mechanics, 1997, 20, 261-266.	4.0	22
43	Theory of elastic waves in threeâ€dimensional anisotropic plates. Journal of the Acoustical Society of America, 1996, 100, 2964-2968.	1.1	2
44	Elastic green's function for a bimaterial composite solid containing a crack inclined to the interface. Computational Mechanics, 1996, 19, 41-48.	4.0	1
45	Elastic Green's function for a damaged interface in anisotropic materials. Journal of Materials Research, 1996, 11, 537-544.	2.6	4
46	Green's function for anisotropic halfâ€space solids in frequency space and calculation of mechanical admittance. Journal of the Acoustical Society of America, 1996, 100, 2960-2963.	1.1	7
47	Lattice correction to mechanical admittance of solids. Journal of the Acoustical Society of America, 1996, 100, 89-91.	1.1	1
48	Surface waves in threeâ€dimensional halfâ€space tetragonal solids. Journal of the Acoustical Society of America, 1996, 100, 86-88.	1.1	9
49	Fidelity of Michelson Interferometric and Conical Piezoelectric Ultrasonic Transducers. , 1996, , 971-978.		0
50	Computationally efficient representation for elastostatic and elastodynamic Green's functions for anisotropic solids. Physical Review B, 1995, 51, 15695-15702.	3.2	36
51	Boundary-integral Analysis of Anisotropic Bimaterials with an Interface Crack. , 1995, , 2868-2873.		0
52	Elastic Green's function for a composite solid containing a crack at an angle to the interface. , 1995, , 2902-2907.		0
53	Lattice imperfections studied by use of lattice Green's functions. Physical Review B, 1992, 46, 10613-10622.	3.2	82
54	Lattice statics of interfaces and interfacial cracks in bimaterial solids. Journal of Materials Research, 1992, 7, 1018-1028.	2.6	16

#	Article	IF	CITATIONS
55	A computationally efficient representation for propagation of elastic waves in anisotropic solids. Journal of the Acoustical Society of America, 1992, 91, 1888-1896.	1.1	31
56	Theoretical study of the fracture of brittle materials: atomistic calculations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 146, 273-289.	5.6	4
57	Theory of capacitive probe method for noncontact characterization of dielectric properties of materials. Journal of Materials Research, 1991, 6, 629-638.	2.6	3
58	Atomic theory of fracture of brittle materials: Application to covalent semiconductors. Journal of Materials Research, 1991, 6, 1553-1566.	2.6	21
59	Green's function for generalized Hilbert problem for cracks and free surfaces in composite materials. Journal of Materials Research, 1991, 6, 2585-2591.	2.6	3
60	Elastic Green's function for a bimaterial composite solid containing a free surface normal to the interface. Journal of Materials Research, 1991, 6, 2592-2608.	2.6	16
61	Generalized plane strain analysis of a bimaterial composite containing a free surface normal to the interface. Journal of Materials Research, 1991, 6, 2609-2622.	2.6	4
62	A relation between the surface energy and the Debye temperature for cubic solids. Journal of Materials Research, 1990, 5, 1118-1122.	2.6	10
63	Lattice statics Green's function method for calculation of atomistic structure of grain boundary interfaces in solids: Part II. Anharmonic theory. Journal of Materials Research, 1989, 4, 320-326.	2.6	3
64	Lattice statics Green's function method for calculation of atomistic structure of grain boundary interfaces in solids: Part I. Harmonic theory. Journal of Materials Research, 1989, 4, 309-319.	2.6	13
65	Elastic Green's function for a composite solid with a planar crack in the interface. Journal of Materials Research, 1989, 4, 124-136.	2.6	30
66	Elastic Green's function for a composite solid with a planar interface. Journal of Materials Research, 1989, 4, 113-123.	2.6	55
67	Theory of chemically induced kink formation on cracks in silica. I.3-D crack Green's functions. Journal of Materials Research, 1987, 2, 619-630.	2.6	29
68	Theory of chemically induced kink formation on cracks in silica. II. Force law calculations. Journal of Materials Research, 1987, 2, 631-637.	2.6	11
69	Open circuit voltage decay in p-n junction diodes at high levels of injection. Solid-State Electronics, 1986, 29, 561-570.	1.4	10
70	Measurements of the open-circuit photovoltage decay in a silicon solar cell. Solar Cells, 1983, 9, 289-293.	0.6	6
71	Effect of pn coupling on open-circuit photovoltage decay in a silicon pn junction solar cell. Journal Physics D: Applied Physics, 1983, 16, 1741-1747.	2.8	2
72	Theory of open-circuit photovoltage decay in a finite base solar cell with drift field. Journal Physics D: Applied Physics, 1982, 15, 1077-1087.	2.8	9

#	Article	IF	CITATIONS
73	Theory of open circuit voltage decay in a p-n junction diode at high injection. Solid-State Electronics, 1982, 25, 903-907.	1.4	8
74	Design and testing of a uniformly illuminating nontracking concentrator. Solar Energy, 1981, 27, 387-391.	6.1	10
75	A new method for the measurement of series resistance of solar cells. Journal Physics D: Applied Physics, 1981, 14, 1643-1646.	2.8	49
76	Effect of pn coupling on steady-state and transient characteristics of a pn junction solar cell. Journal Physics D: Applied Physics, 1981, 14, 1115-1124.	2.8	5
77	Temperature effects in silicon solar cells. Solid-State Electronics, 1980, 23, 1021-1028.	1.4	42
78	Effect of plasma reflection on open ircuit voltage of a solar cell at ultrahigh light intensities. Applied Physics Letters, 1980, 37, 58-59.	3.3	2
79	Surface boundary condition for solar cell diffusion equation. Journal Physics D: Applied Physics, 1980, 13, 835-837.	2.8	3
80	Response of a silicon p-n solar cell to high intensity light. Journal Physics D: Applied Physics, 1980, 13, 1885-1898.	2.8	12
81	Change of phonon dispersion curves due to interstitials in Al. Zeitschrift Für Physik B Condensed Matter and Quanta, 1975, 21, 255-261.	1.9	24
82	Lattice dynamics of a solid with a screw dislocation. Journal of Physics C: Solid State Physics, 1974, 7, 261-278.	1.5	11
83	Green-function method for lattice statics. Advances in Physics, 1973, 22, 757-810.	14.4	226
84	Lattice distortion due to gas interstitials in bcc metals. Journal of Physics F: Metal Physics, 1973, 3, 1515-1523.	1.6	52
85	Tunnelling levels of librator in Ohfield. Journal of Physics C: Solid State Physics, 1973, 6, 1999-2009.	1.5	7
86	On a relation between the monovacancy formation energy and the Debye temperature for metals. Journal of Physics F: Metal Physics, 1973, 3, 704-708.	1.6	34
87	Theory of defect superlattices in crystals with application to void/vacancy and nitrogen interstitial lattices in tantalum and vanadium. Journal of Physics F: Metal Physics, 1973, 3, 1275-1284.	1.6	24
88	Activation energy of gas interstitials in BCC metals. Journal of Physics F: Metal Physics, 1973, 3, 1910-1914.	1.6	4
89	Mossbauer, effect for57Fe in copper. Journal of Physics F: Metal Physics, 1973, 3, 1256-1260.	1.6	4

90 The Direct Construction of the Lattice Green Function. , 1972, , 155-176.

6

#	Article	IF	CITATIONS
91	Theory of the void lattice in molybdenum. Journal of Physics F: Metal Physics, 1972, 2, L69-L72.	1.6	32
92	On a semi-continuum Green function method for lattice dynamics with application to copper. Journal of Physics F: Metal Physics, 1971, 1, 554-569.	1.6	16
93	Carbon fibre composite as collimator and filter for stress waves. Journal Physics D: Applied Physics, 1971, 4, L5-L6.	2.8	Ο
94	Evaluation of the Fourier coefficients in the expansion of the lattice Green function and the frequency spectrum. Proceedings of the Physical Society, 1967, 92, 987-989.	1.6	5
95	The Fourier expansion method for computation of the frequency distribution function of crystals. Proceedings of the Physical Society, 1965, 86, 1225-1233.	1.6	6
96	Nuclear Size Correction to the Relativistic Thomas Fermi Equation of State and Its Effect on Chandrasekhar's Mass Limit. Progress of Theoretical Physics, 1963, 29, 691-698.	2.0	1
97	Calculations on the Lowâ€Temperature Specific Heat of Selenium and Tellurium. Journal of Chemical Physics, 1963, 38, 417-419.	3.0	19