Li Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/2013732/li-zhang-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,256 18 27 31 h-index g-index citations papers 1,514 31 7.3 4.73 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
27	Boron-doped graphene quantum dots for selective glucose sensing based on the "abnormal" aggregation-induced photoluminescence enhancement. <i>Analytical Chemistry</i> , 2014 , 86, 4423-30	7.8	281
26	Using graphene quantum dots as photoluminescent probes for protein kinase sensing. <i>Analytical Chemistry</i> , 2013 , 85, 9148-55	7.8	148
25	Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing. <i>Chemistry - A European Journal</i> , 2013 , 19, 3822-6	4.8	144
24	Highly Photoluminescent Molybdenum Oxide Quantum Dots: One-Pot Synthesis and Application in 2,4,6-Trinitrotoluene Determination. <i>ACS Applied Materials & Determination (Material & Determination (Mater</i>	9.5	94
23	Colorimetric Assay Conversion to Highly Sensitive Electrochemical Assay for Bimodal Detection of Arsenate Based on Cobalt Oxyhydroxide Nanozyme via Arsenate Absorption. <i>Analytical Chemistry</i> , 2019 , 91, 6487-6497	7.8	64
22	Facile and Green Approach to the Synthesis of Boron Nitride Quantum Dots for 2,4,6-Trinitrophenol Sensing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 7315-7323	9.5	64
21	DNA-templated Ag nanoclusters as fluorescent probes for sensing and intracellular imaging of hydroxyl radicals. <i>Talanta</i> , 2014 , 118, 339-47	6.2	52
20	Graphene Quantum Dots Assembled with Metalloporphyrins for "Turn on" Sensing of Hydrogen Peroxide and Glucose. <i>Chemistry - A European Journal</i> , 2015 , 21, 9343-8	4.8	45
19	One-Pot Synthesis of Boron Carbon Nitride Nanosheets for Facile and Efficient Heavy Metal Ions Removal. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11685-11694	8.3	44
18	Rapid Detection of Mercury Ions Based on Nitrogen-Doped Graphene Quantum Dots Accelerating Formation of Manganese Porphyrin. <i>ACS Sensors</i> , 2018 , 3, 1040-1047	9.2	40
17	Nitrogen-Doped Graphene Quantum Dots as a New Catalyst Accelerating the Coordination Reaction between Cadmium(II) and 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin for Cadmium(II) Sensing. <i>Analytical Chemistry</i> , 2015 , 87, 10894-901	7.8	37
16	Label-free colorimetric detection of arsenite utilizing G-/T-rich oligonucleotides and unmodified Au nanoparticles. <i>Chemistry - A European Journal</i> , 2013 , 19, 5029-33	4.8	33
15	Highly photoluminescent MoO(x) quantum dots: Facile synthesis and application in off-on Pi sensing in lake water samples. <i>Analytica Chimica Acta</i> , 2016 , 906, 148-155	6.6	31
14	New Off-On Sensor for Captopril Sensing Based on Photoluminescent MoO Quantum Dots. <i>ACS Omega</i> , 2017 , 2, 1666-1671	3.9	24
13	Rational design of covalent organic frameworks as a groundbreaking uranium capture platform through three synergistic mechanisms. <i>Applied Catalysis B: Environmental</i> , 2021 , 294, 120250	21.8	24
12	Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe2+ sensing. Journal of Nanoparticle Research, 2017 , 19, 1	2.3	22
11	Multimodal Assay of Arsenite Contamination in Environmental Samples with Improved Sensitivity through Stimuli-Response of Multiligands Modified Silver Nanoparticles. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 6223-6232	8.3	20

LIST OF PUBLICATIONS

10	Facile surface modification of mesoporous silica with heterocyclic silanes for efficiently removing arsenic. <i>Chinese Chemical Letters</i> , 2019 , 30, 1133-1136	8.1	18
9	Optical sensors for inorganic arsenic detection. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 118, 869-879	9 14.6	17
8	A new copper mediated on-off assay for alkaline phosphatase detection based on MoOx quantum dots. <i>Microchemical Journal</i> , 2018 , 141, 170-175	4.8	15
7	CdSe/ZnS quantum dots coated with carboxy-PEG and modified with the terbium(III) complex of guanosine 5Fmonophosphate as a fluorescent nanoprobe for ratiometric determination of arsenate via its inhibition of acid phosphatase activity. <i>Mikrochimica Acta</i> , 2019 , 186, 45	5.8	11
6	Facile Construction of Covalent Organic Framework Nanozyme for Colorimetric Detection of Uranium. <i>Small</i> , 2021 , 17, e2102944	11	10
5	Fluorescent Molybdenum Oxide Quantum Dots and HgII Synergistically Accelerate Cobalt Porphyrin Formation: A New Strategy for Trace HgII Analysis. <i>ACS Applied Nano Materials</i> , 2018 , 1, 1484	- ₹ 491	6
4	Covalent Organic Frameworks as Advanced Uranyl Electrochemiluminescence Monitoring Platforms. <i>Analytical Chemistry</i> , 2021 , 93, 16149-16157	7.8	5
3	Peroxidase-Mimetic and Fenton-Like Activities of Molybdenum Oxide Quantum Dots. <i>ChemistrySelect</i> , 2020 , 5, 10149-10155	1.8	2
2	Visual detection of captopril based on the light activated oxidase-mimic activity of covalent organic framework. <i>Microchemical Journal</i> , 2022 , 175, 107080	4.8	1
1	Preparation and structure tuning of graphene quantum dots for optical applications in chemosensing, biosensing, and bioimaging 2022 , 41-77		