## Li Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013732/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the "Abnormal―<br>Aggregation-Induced Photoluminescence Enhancement. Analytical Chemistry, 2014, 86, 4423-4430.                                                             | 3.2  | 334       |
| 2  | Using Graphene Quantum Dots as Photoluminescent Probes for Protein Kinase Sensing. Analytical<br>Chemistry, 2013, 85, 9148-9155.                                                                                                                     | 3.2  | 166       |
| 3  | Graphene Quantum Dots Combined with Europium Ions as Photoluminescent Probes for Phosphate<br>Sensing. Chemistry - A European Journal, 2013, 19, 3822-3826.                                                                                          | 1.7  | 159       |
| 4  | Highly Photoluminescent Molybdenum Oxide Quantum Dots: One-Pot Synthesis and Application in 2,4,6-Trinitrotoluene Determination. ACS Applied Materials & Interfaces, 2016, 8, 8184-8191.                                                             | 4.0  | 115       |
| 5  | Colorimetric Assay Conversion to Highly Sensitive Electrochemical Assay for Bimodal Detection of<br>Arsenate Based on Cobalt Oxyhydroxide Nanozyme via Arsenate Absorption. Analytical Chemistry, 2019,<br>91, 6487-6497.                            | 3.2  | 98        |
| 6  | Facile and Green Approach to the Synthesis of Boron Nitride Quantum Dots for 2,4,6-Trinitrophenol<br>Sensing. ACS Applied Materials & Interfaces, 2018, 10, 7315-7323.                                                                               | 4.0  | 88        |
| 7  | Rational design of covalent organic frameworks as a groundbreaking uranium capture platform<br>through three synergistic mechanisms. Applied Catalysis B: Environmental, 2021, 294, 120250.                                                          | 10.8 | 77        |
| 8  | Facile Construction of Covalent Organic Framework Nanozyme for Colorimetric Detection of<br>Uranium. Small, 2021, 17, e2102944.                                                                                                                      | 5.2  | 69        |
| 9  | One-Pot Synthesis of Boron Carbon Nitride Nanosheets for Facile and Efficient Heavy Metal Ions<br>Removal. ACS Sustainable Chemistry and Engineering, 2018, 6, 11685-11694.                                                                          | 3.2  | 68        |
| 10 | DNA-templated Ag nanoclusters as fluorescent probes for sensing and intracellular imaging of hydroxyl radicals. Talanta, 2014, 118, 339-347.                                                                                                         | 2.9  | 62        |
| 11 | Graphene Quantum Dots Assembled with Metalloporphyrins for "Turn on―Sensing of Hydrogen<br>Peroxide and Glucose. Chemistry - A European Journal, 2015, 21, 9343-9348.                                                                                | 1.7  | 54        |
| 12 | Rapid Detection of Mercury lons Based on Nitrogen-Doped Graphene Quantum Dots Accelerating<br>Formation of Manganese Porphyrin. ACS Sensors, 2018, 3, 1040-1047.                                                                                     | 4.0  | 54        |
| 13 | Nitrogen-Doped Graphene Quantum Dots as a New Catalyst Accelerating the Coordination Reaction<br>between Cadmium(II) and 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin for Cadmium(II) Sensing.<br>Analytical Chemistry, 2015, 87, 10894-10901. | 3.2  | 52        |
| 14 | Construction of Two-Dimensional Fluorescent Covalent Organic Framework Nanosheets for the Detection and Removal of Nitrophenols. Analytical Chemistry, 2022, 94, 2517-2526.                                                                          | 3.2  | 43        |
| 15 | Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe2+ sensing.<br>Journal of Nanoparticle Research, 2017, 19, 1.                                                                                                | 0.8  | 38        |
| 16 | Labelâ€Free Colorimetric Detection of Arsenite Utilizing Gâ€∤Tâ€Rich Oligonucleotides and Unmodified Au<br>Nanoparticles. Chemistry - A European Journal, 2013, 19, 5029-5033.                                                                       | 1.7  | 37        |
| 17 | Highly photoluminescent MoO x quantum dots: Facile synthesis and application in off-on Pi sensing in lake water samples. Analytica Chimica Acta, 2016, 906, 148-155.                                                                                 | 2.6  | 36        |
| 18 | New Off–On Sensor for Captopril Sensing Based on Photoluminescent MoO <i><sub>x</sub></i> Quantum Dots. ACS Omega, 2017, 2, 1666-1671.                                                                                                               | 1.6  | 35        |

LI ZHANG

| #  | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optical sensors for inorganic arsenic detection. TrAC - Trends in Analytical Chemistry, 2019, 118, 869-879.                                                                                                                                                                          | 5.8 | 32        |
| 20 | Construction of D–A-Conjugated Covalent Organic Frameworks with Enhanced Photodynamic,<br>Photothermal, and Nanozymatic Activities for Efficient Bacterial Inhibition. ACS Applied Materials<br>& Interfaces, 2022, 14, 28289-28300.                                                 | 4.0 | 32        |
| 21 | Multimodal Assay of Arsenite Contamination in Environmental Samples with Improved Sensitivity<br>through Stimuli-Response of Multiligands Modified Silver Nanoparticles. ACS Sustainable Chemistry<br>and Engineering, 2018, 6, 6223-6232.                                           | 3.2 | 31        |
| 22 | Covalent Organic Frameworks as Advanced Uranyl Electrochemiluminescence Monitoring Platforms.<br>Analytical Chemistry, 2021, 93, 16149-16157.                                                                                                                                        | 3.2 | 29        |
| 23 | Facile surface modification of mesoporous silica with heterocyclic silanes for efficiently removing arsenic. Chinese Chemical Letters, 2019, 30, 1133-1136.                                                                                                                          | 4.8 | 24        |
| 24 | A new copper mediated on-off assay for alkaline phosphatase detection based on MoOx quantum dots.<br>Microchemical Journal, 2018, 141, 170-175.                                                                                                                                      | 2.3 | 18        |
| 25 | CdSe/ZnS quantum dots coated with carboxy-PEG and modified with the terbium(III) complex of<br>guanosine 5′-monophosphate as a fluorescent nanoprobe for ratiometric determination of arsenate<br>via its inhibition of acid phosphatase activity. Mikrochimica Acta, 2019, 186, 45. | 2.5 | 16        |
| 26 | Visual detection of captopril based on the light activated oxidase-mimic activity of covalent organic framework. Microchemical Journal, 2022, 175, 107080.                                                                                                                           | 2.3 | 14        |
| 27 | Redox-Responsive Breakup of a Nucleic Acids@CoOOH Nanocomplex Triggering Cascade Recycling<br>Amplification for Sensitive Sensing of Alkaline Phosphatase. Analytical Chemistry, 2022, 94, 6711-6718.                                                                                | 3.2 | 11        |
| 28 | Fluorescent Molybdenum Oxide Quantum Dots and Hg <sup>II</sup> Synergistically Accelerate Cobalt<br>Porphyrin Formation: A New Strategy for Trace Hg <sup>II</sup> Analysis. ACS Applied Nano Materials,<br>2018, 1, 1484-1491.                                                      | 2.4 | 8         |
| 29 | Peroxidaseâ€Mimetic and Fentonâ€Like Activities of Molybdenum Oxide Quantum Dots. ChemistrySelect,<br>2020, 5, 10149-10155.                                                                                                                                                          | 0.7 | 6         |
| 30 | Ultraâ€sensitive detection of UO 2 2+ based on dopamine functionalized MoO x QDs. Luminescence, 2021,<br>, .                                                                                                                                                                         | 1.5 | 2         |
| 31 | Preparation and structure tuning of graphene quantum dots for optical applications in chemosensing, biosensing, and bioimaging. , 2022, , 41-77.                                                                                                                                     |     | 0         |