Richard Lenhard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013690/publications.pdf Version: 2024-02-01

RICHARD LENHARD

#	Article	IF	CITATIONS
1	Hydrogen Production Possibilities in Slovak Republic. Applied Sciences (Switzerland), 2022, 12, 3525.	2.5	0
2	Heat Production in Considering Boilers and their Influence on CO and NO _x Emission Values. MATEC Web of Conferences, 2022, 357, 07002.	0.2	0
3	Numerical Simulation of Passive Cooling Beam and Its Optimization to Increase the Cooling Power. Processes, 2021, 9, 1478.	2.8	4
4	Experimental Evaluation of Axial Reaction Turbine Stage Bucket Losses. Processes, 2021, 9, 1816.	2.8	7
5	Design and Optimization of a High-Speed Switched Reluctance Motor. Energies, 2021, 14, 6733.	3.1	10
6	Measurement on Axial Reaction Turbine Stage. MATEC Web of Conferences, 2020, 328, 03013.	0.2	1
7	Heat transfer distribution inside porous media as replacement for finned heat exchanger. AIP Conference Proceedings, 2019, , .	0.4	2
8	Heat recovery systems. AIP Conference Proceedings, 2019, , .	0.4	2
9	Modelling of Heat Transfer in the Evaporator and Condenser of the Working Fluid in the Heat Pipe. Heat Transfer Engineering, 2019, 40, 215-226.	1.9	51
10	Natural convection heat transfer around a horizontal circular cylinder near an isothermal vertical wall. EPJ Web of Conferences, 2018, 180, 02077.	0.3	5
11	Numerical modelling of heat flows in the upper blast furnace of the electric arc furnace. MATEC Web of Conferences, 2018, 157, 02025.	0.2	0
12	Energy storage in to the hydrates. AIP Conference Proceedings, 2018, , .	0.4	1
13	Numerical simulation of induction heating thick-walled tubes. MATEC Web of Conferences, 2018, 168, 02004.	0.2	3
14	Numerical simulation of airflow around the evaporator in the closed space. EPJ Web of Conferences, 2018, 180, 02088.	0.3	0
15	Flow over evaporator in electrotechnical box. MATEC Web of Conferences, 2018, 168, 02010.	0.2	0
16	Numerical simulation of airflow around the evaporator in the closed space. EPJ Web of Conferences, 2018, 180, 02088.	0.3	0
17	Mathematical modelling of non-isothermal flow in buildings. EPJ Web of Conferences, 2017, 143, 02066.	0.3	7
18	Proposal of experimental device for the continuous accumulation of primary energy in natural gas hydrates. EPJ Web of Conferences, 2017, 143, 02106.	0.3	13

RICHARD LENHARD

#	Article	IF	CITATIONS
19	Utilization of waste heat from aluminium electrolytic cell. AIP Conference Proceedings, 2017, , .	0.4	4
20	The second device for measuring of the thickness of the falling condensate in the gravity assisted heat pipe. AIP Conference Proceedings, 2016, , .	0.4	1
21	Measuring velocity and temperature profile sectional pipeline behind confuser. AIP Conference Proceedings, 2016, , .	0.4	1
22	The impact of municipal waste combustion in small heat sources. AIP Conference Proceedings, 2016, , .	0.4	4
23	Simplification of simulation processes at gravity heat pipes. EPJ Web of Conferences, 2016, 114, 02043.	0.3	1
24	Optimization principle of operating parameters of heat exchanger by using CFD simulation. EPJ Web of Conferences, 2016, 114, 02074.	0.3	3
25	Specifics of phytomass combustion in small experimental device. EPJ Web of Conferences, 2015, 92, 02047.	0.3	1
26	Mathematical simulation of heat exchanger working conditions. EPJ Web of Conferences, 2015, 92, 02019.	0.3	13
27	COMPARISON OF MATHEMATICAL MODELS FOR HEAT EXCHANGERS OF UNCONVENTIONAL CHP UNITS. Acta Polytechnica, 2015, 55, 223.	0.6	14
28	An optical method for measuring the thickness of a falling condensate in gravity assisted heat pipe. EPJ Web of Conferences, 2015, 92, 02031.	0.3	1
29	Utilization of heat pipes for transfer heat from the flue gas into the heat transfer medium. EPJ Web of Conferences, 2014, 67, 02067.	0.3	16
30	Dependence the amount of combustion air and its redistribution to primary and secondary combustion air and his depending on the boiler. , 2014, , .		4
31	The heat exchanger of small pellet boiler for phytomass. , 2014, , .		0
32	Preface: Proceedings of the International Conference – XIX. The Application of Experimental and Numerical Methods in Fluid Mechanics and Energetics 2014. , 2014, , .		0
33	Heat exchanger design for hot air ericsson-brayton piston engine. EPJ Web of Conferences, 2014, 67, 02023.	0.3	1
34	Mathematical model of heat transport through gravity assisted heat pipe in order to set length of the pipe. , 2014, , .		2
35	Analysis of the fill amount influence on the heat performance of heat pipe. AIP Conference Proceedings, 2014, , .	0.4	13
36	Condenser Optimization of Heat Pipe. Communications - Scientific Letters of the University of Zilina, 2014, 16, 62-66.	0.6	6

RICHARD LENHARD

#	Article	IF	CITATIONS
37	Numerical simulation device for the transport of geothermal heat with forced circulation of media. Mathematical and Computer Modelling, 2013, 57, 111-125.	2.0	36
38	HEAT exchanger design for hot air Ericsson-Brayton piston engine. AIP Conference Proceedings, 2013, ,	0.4	4
39	Design and numerical simulation of the heat exchanger for heat recovery system with melting furnaces for melting secondary a uminums. EPJ Web of Conferences, 2013, 45, 01033.	0.3	2
40	Two-phase modeling of interphase heat transport from the condensation to evaporation part of the heat-pipe. , 2013, , .		15
41	The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source. EPJ Web of Conferences, 2013, 45, 01125.	0.3	2
42	Staged the conversion of carbon dioxide in the simulator. EPJ Web of Conferences, 2013, 45, 01058.	0.3	0
43	Numerical simulation of indirect heating of water by heat transfer surface area located at the heat source. EPJ Web of Conferences, 2013, 45, 01048.	0.3	0
44	Optimization of heat exchanger for indirectly heated water heater. EPJ Web of Conferences, 2012, 25, 01036.	0.3	1
45	Borehole model for simulation transport geothermal heat with heat pipe system and with forced circulation of heat carrier. EPJ Web of Conferences, 2012, 25, 01030.	0.3	1
46	Numerical simulation of borehole model which utilizes low-potential geothermal heat. EPJ Web of Conferences, 2012, 25, 01048.	0.3	3
47	Visualization of heat transport in heat pipes using thermocamera. Archives of Thermodynamics, 2010, 31, 125-132.	1.0	15
48	Numerical Simulation of Indirectly Heated Hot Water Heater. Advanced Materials Research, 0, 875-877, 1693-1697.	0.3	11