Jinsheng Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013607/publications.pdf Version: 2024-02-01

LINCHENC LAL

#	Article	IF	CITATIONS
1	TheÂRppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust inÂmaize. Molecular Plant, 2022, 15, 904-912.	3.9	31
2	DNA demethylation affects imprinted gene expression in maize endosperm. Genome Biology, 2022, 23, 77.	3.8	20
3	Maize PPR278 Functions in Mitochondrial RNA Splicing and Editing. International Journal of Molecular Sciences, 2022, 23, 3035.	1.8	6
4	<i>ENB1</i> encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells. Plant Cell, 2022, 34, 1054-1074.	3.1	13
5	The transcription factor <i>bZIP68</i> negatively regulates cold tolerance in maize. Plant Cell, 2022, 34, 2833-2851.	3.1	42
6	The transcription factor ZmMYB69 represses lignin biosynthesis by activating <i>ZmMYB31/42</i> expression in maize. Plant Physiology, 2022, 189, 1916-1919.	2.3	11
7	Large-scale reconstruction of chromatin structures of maize temperate and tropical inbred lines. Journal of Experimental Botany, 2021, 72, 3582-3596.	2.4	5
8	Metabolomicsâ€driven gene mining and genetic improvement of tolerance to saltâ€induced osmotic stress in maize. New Phytologist, 2021, 230, 2355-2370.	3.5	46
9	MP3RNAâ€seq: Massively parallel 3′ end RNA sequencing for highâ€throughput gene expression profiling and genotyping. Journal of Integrative Plant Biology, 2021, 63, 1227-1239.	4.1	4
10	Cotyledons facilitate the adaptation of earlyâ€maturing soybean varieties to highâ€latitude longâ€day environments. Plant, Cell and Environment, 2021, 44, 2551-2564.	2.8	15
11	Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nature Methods, 2021, 18, 499-506.	9.0	182
12	Large-scale translatome profiling annotates the functional genome and reveals the key role of genic 3′ untranslated regions in translatomic variation in plants. Plant Communications, 2021, 2, 100181.	3.6	15
13	Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biology, 2021, 22, 237.	3.8	21
14	HITAC-seq enables high-throughput cost-effective sequencing of plasmids and DNA fragments with identity. Journal of Genetics and Genomics, 2021, 48, 671-680.	1.7	2
15	ZmCTLP1 is required for the maintenance of lipid homeostasis and the basal endosperm transfer layer in maize kernels. New Phytologist, 2021, 232, 2384-2399.	3.5	9
16	<i>Miniature Seed6</i> , encoding an endoplasmic reticulum signal peptidase, is critical in seed development. Plant Physiology, 2021, 185, 985-1001.	2.3	8
17	Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nature Plants, 2021, 7, 1579-1588.	4.7	52
18	Genomeâ€wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnology Journal, 2020, 18, 185-194.	4.1	39

#	Article	IF	CITATIONS
19	Evolution and Domestication Footprints Uncovered from the Genomes of Coix. Molecular Plant, 2020, 13, 295-308.	3.9	35
20	Maize <i>WI5</i> encodes an endoâ€1,4â€î²â€xylanase required for secondary cell wall synthesis and water transport in xylem. Journal of Integrative Plant Biology, 2020, 62, 1607-1624.	4.1	11
21	A Large Transposon Insertion in the <i>stiff1</i> Promoter Increases Stalk Strength in Maize. Plant Cell, 2020, 32, 152-165.	3.1	40
22	Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 2020, 52, 565-571.	9.4	146
23	A barley stripe mosaic virusâ€based guide RNA delivery system for targeted mutagenesis in wheat and maize. Molecular Plant Pathology, 2019, 20, 1463-1474.	2.0	91
24	Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nature Communications, 2019, 10, 464.	5.8	81
25	Mutation of ZmDMP enhances haploid induction in maize. Nature Plants, 2019, 5, 575-580.	4.7	149
26	Long-range interactions between proximal and distal regulatory regions in maize. Nature Communications, 2019, 10, 2633.	5.8	79
27	High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development. Plant Cell, 2019, 31, 974-992.	3.1	141
28	A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants, 2019, 5, 1297-1308.	4.7	136
29	Characterization of maize translational responses to sugarcane mosaic virus infection. Virus Research, 2019, 259, 97-107.	1.1	11
30	OS1 functions in the allocation of nutrients between the endosperm and embryo in maize seeds. Journal of Integrative Plant Biology, 2019, 61, 706-727.	4.1	15
31	Construction of the third-generation Zea mays haplotype map. GigaScience, 2018, 7, 1-12.	3.3	191
32	Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 2018, 18, 68.	1.6	116
33	<i>Defective Kernel 39</i> encodes a PPR protein required for seed development in maize. Journal of Integrative Plant Biology, 2018, 60, 45-64.	4.1	54
34	Sequential gene activation and gene imprinting during early embryo development in maize. Plant Journal, 2018, 93, 445-459.	2.8	18
35	A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na ⁺ exclusion and salt tolerance in maize. New Phytologist, 2018, 217, 1161-1176.	3.5	229
36	Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nature Genetics, 2018, 50, 1289-1295.	9.4	335

#	Article	IF	CITATIONS
37	Identification and Fine-Mapping of a Major Maize Leaf Width QTL in a Re-sequenced Large Recombinant Inbred Lines Population. Frontiers in Plant Science, 2018, 9, 101.	1.7	21
38	Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biology, 2018, 18, 17.	1.6	33
39	Parent-of-origin-dependent nucleosome organization correlates with genomic imprinting in maize. Genome Research, 2018, 28, 1020-1028.	2.4	5
40	A 4-bp Insertion at ZmPLA1 Encoding a Putative Phospholipase A Generates Haploid Induction inÂMaize. Molecular Plant, 2017, 10, 520-522.	3.9	219
41	Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome. Applied and Environmental Microbiology, 2017, 83, .	1.4	10
42	Genome-wide Nucleosome Occupancy and Organization Modulates the Plasticity of Gene Transcriptional Status in Maize. Molecular Plant, 2017, 10, 962-974.	3.9	16
43	Highly interwoven communities of a gene regulatory network unveil topologically important genes for maize seed development. Plant Journal, 2017, 92, 1143-1156.	2.8	20
44	Dynamic and Antagonistic Allele-Specific Epigenetic Modifications Controlling the Expression of Imprinted Genes in Maize Endosperm. Molecular Plant, 2017, 10, 442-455.	3.9	38
45	The coupled effect of nucleosome organization on gene transcription level and transcriptional plasticity. Nucleus, 2017, 8, 605-612.	0.6	6
46	The second subunit of DNA-polymerase delta is required for genomic stability and epigenetic regulation. Plant Physiology, 2016, 171, pp.01976.2015.	2.3	15
47	Gene duplication confers enhanced expression of 27-kDa Î ³ -zein for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4964-4969.	3.3	67
48	Genetic dissection of maize seedling root system architecture traits using an ultraâ€high density binâ€map and a recombinant inbred line population. Journal of Integrative Plant Biology, 2016, 58, 266-279.	4.1	48
49	DNA methylation signature of intergenic region involves in nucleosome remodeler DDM1-mediated repression of aberrantÂgeneÂtranscriptional read-through. Journal of Genetics and Genomics, 2016, 43, 513-523.	1.7	16
50	The Genetic Basis of Haploid Induction in Maize Identified with a Novel Genome-Wide Association Method. Genetics, 2016, 202, 1267-1276.	1.2	61
51	Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9. Journal of Genetics and Genomics, 2016, 43, 25-36.	1.7	171
52	Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. Plant Journal, 2015, 84, 1206-1218.	2.8	162
53	Methyl-CpG-Binding Domain Protein MBD7 Is Required for Active DNA Demethylation in Arabidopsis Â. Plant Physiology, 2015, 167, 905-914.	2.3	51
54	Patterns of genomic changes with crop domestication and breeding. Current Opinion in Plant Biology, 2015, 24, 47-53.	3.5	83

#	Article	IF	CITATIONS
55	Genome-Wide Identification of VQ Motif-Containing Proteins and their Expression Profiles Under Abiotic Stresses in Maize. Frontiers in Plant Science, 2015, 6, 1177.	1.7	59
56	Dynamic Transcriptome Landscape of Maize Embryo and Endosperm Development Â. Plant Physiology, 2014, 166, 252-264.	2.3	274
57	Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nature Communications, 2014, 5, 3849.	5.8	202
58	Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Research, 2014, 24, 167-176.	2.4	140
59	<i>REPRESSOR OF SILENCING5</i> Encodes a Member of the Small Heat Shock Protein Family and Is Required for DNA Demethylation in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 2660-2675.	3.1	42
60	Metabolic map of mature maize kernels. Metabolomics, 2014, 10, 775-787.	1.4	55
61	An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15, 433.	1.2	151
62	Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biology, 2013, 13, 162.	1.6	68
63	Genomeâ€wide Transcription Factor Gene Prediction and their Expressional Tissue‧pecificities in Maize ^F . Journal of Integrative Plant Biology, 2012, 54, 616-630.	4.1	82
64	Characterization, fine mapping and expression profiling of Ragged leaves1 in maize. Theoretical and Applied Genetics, 2012, 125, 1125-1135.	1.8	7
65	Genome-wide genetic changes during modern breeding of maize. Nature Genetics, 2012, 44, 812-815.	9.4	352
66	Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 2012, 44, 803-807.	9.4	577
67	Comparative population genomics of maize domestication and improvement. Nature Genetics, 2012, 44, 808-811.	9.4	816
68	Identification and Fine Mapping of <i>rhm1</i> Locus for Resistance to Southern Corn Leaf Blight in Maize ^F . Journal of Integrative Plant Biology, 2012, 54, 321-329.	4.1	19
69	Identification of genetic factors affecting plant density response through QTL mapping of yield component traits in maize (Zea mays L.). Euphytica, 2011, 182, 409.	0.6	33
70	Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20042-20047.	3.3	162
71	Identification of an Active New <i>Mutator</i> Transposable Element in Maize. G3: Genes, Genomes, Genetics, 2011, 1, 293-302.	0.8	46
72	Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics, 2010, 42, 1027-1030.	9.4	439

#	Article	IF	CITATIONS
73	Steady-state transposon mutagenesis in inbred maize. Plant Journal, 2005, 44, 52-61.	2.8	234
74	Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9068-9073.	3.3	244
75	Close Split of Sorghum and Maize Genome Progenitors. Genome Research, 2004, 14, 1916-1923.	2.4	443
76	Characterization of the Maize Endosperm Transcriptome and Its Comparison to the Rice Genome. Genome Research, 2004, 14, 1932-1937.	2.4	80