Gawen R T Jenkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013485/publications.pdf Version: 2024-02-01

CAMEN R T IENKIN

#	Article	IF	CITATIONS
1	Mineral-scale variation in the trace metal and sulfur isotope composition of pyrite: implications for metal and sulfur sources in mafic VMS deposits. Mineralium Deposita, 2022, 57, 911-933.	1.7	7
2	Chemical Dissolution of Chalcopyrite Concentrate in Choline Chloride Ethylene Glycol Deep Eutectic Solvent. Minerals (Basel, Switzerland), 2022, 12, 65.	0.8	9
3	A Unified Method for the Recovery of Metals from Chalcogenides. ACS Sustainable Chemistry and Engineering, 2021, 9, 2929-2936.	3.2	5
4	Effects of magmatic volatile influx in mafic VMS hydrothermal systems: Evidence from the Troodos ophiolite, Cyprus. Chemical Geology, 2020, 531, 119325.	1.4	29
5	A Mississippian black shale record of redox oscillation in the Craven Basin, UK. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538, 109423.	1.0	11
6	The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents. Green Chemistry, 2020, 22, 5476-5486.	4.6	92
7	Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents. Green Chemistry, 2020, 22, 8360-8368.	4.6	34
8	Pyrite chemistry: A new window into Au-Te ore-forming processes in alkaline epithermal districts, Cripple Creek, Colorado. Geochimica Et Cosmochimica Acta, 2020, 274, 172-191.	1.6	63
9	Direct extraction of copper from copper sulfide minerals using deep eutectic solvents. Green Chemistry, 2019, 21, 6502-6512.	4.6	57
10	A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geology Reviews, 2018, 96, 269-282.	1.1	184
11	Paint casting: A facile method of studying mineral electrochemistry. Electrochemistry Communications, 2017, 76, 20-23.	2.3	18
12	Dissolution of pyrite and other Fe–S–As minerals using deep eutectic solvents. Green Chemistry, 2017, 19, 2225-2233.	4.6	43
13	Stream and slope weathering effects on organic-rich mudstone geochemistry and implications for hydrocarbon source rock assessment: A Bowland Shale case study. Chemical Geology, 2017, 471, 74-91.	1.4	13
14	Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems. Ore Geology Reviews, 2017, 89, 772-779.	1.1	35
15	Magmatic Cu-Ni-PGE-Au sulfide mineralisation in alkaline igneous systems: An example from the Sron Garbh intrusion, Tyndrum, Scotland. Ore Geology Reviews, 2017, 80, 961-984.	1.1	25
16	The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals. Minerals Engineering, 2016, 87, 18-24.	1.8	154
17	Regolith mapping of deeply weathered terrain in savannah regions of the Birimian Lawra Greenstone Belt, Ghana. Journal of Geochemical Exploration, 2015, 159, 194-207.	1.5	16
18	Ore deposits in an evolving Earth: an introduction. Geological Society Special Publication, 2015, 393, 1-8.	0.8	10

GAWEN R T JENKIN

#	Article	IF	CITATIONS
19	Stratigraphy and geochronology of the Tambien Group, Ethiopia: Evidence for globally synchronous carbon isotope change in the Neoproterozoic. Geology, 2015, 43, 323-326.	2.0	69
20	How the Neoproterozoic S-isotope record illuminates the genesis of vein gold systems: an example from the Dalradian Supergroup in Scotland. Geological Society Special Publication, 2015, 393, 213-247.	0.8	9
21	Electrocatalytic recovery of elements from complex mixtures using deep eutectic solvents. Green Chemistry, 2015, 17, 2172-2179.	4.6	70
22	Tracing Carbon: Natural Mineral Carbonation and The Incorporation of Atmospheric vs. Recycled CO2. Energy Procedia, 2013, 37, 5897-5904.	1.8	8
23	Orogenic gold mineralisation hosted by Archaean basement rocks at Sortekap, Kangerlussuaq area, East Greenland. Mineralium Deposita, 2013, 48, 453-466.	1.7	3
24	Quantifying the release of base metals from source rocks for volcanogenic massive sulfide deposits: Effects of protolith composition and alteration mineralogy. Journal of Geochemical Exploration, 2012, 118, 47-59.	1.5	56
25	Unusual mixed silica–carbonate deposits from magmatic–hydrothermal hot springs, Savo, Solomon Islands. Journal of the Geological Society, 2011, 168, 1297-1310.	0.9	12
26	DNA damage in earthworms from highly contaminated soils: Assessing resistance to arsenic toxicity by use of the Comet assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 696, 95-100.	0.9	43
27	Anomalous alkaline sulphate fluids produced in a magmatic hydrothermal system — Savo, Solomon Islands. Chemical Geology, 2010, 275, 35-49.	1.4	13
28	The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands. Contributions To Mineralogy and Petrology, 2009, 158, 785-801.	1.2	37
29	Earthworms and inÂvitro physiologically-based extraction tests: complementary tools for a holistic approach towards understanding risk at arsenic-contaminated sites. Environmental Geochemistry and Health, 2009, 31, 273-282.	1.8	29
30	Arsenic biotransformation in earthworms from contaminated soils. Journal of Environmental Monitoring, 2009, 11, 1484.	2.1	38
31	Human toenails as a biomarker of exposure to elevated environmental arsenic. Journal of Environmental Monitoring, 2009, 11, 610.	2.1	65
32	Quantitative arsenic speciation in two species of earthworms from a former mine site. Journal of Environmental Monitoring, 2008, 10, 753.	2.1	64
33	Contrasting Cooling Rates in the Lower Oceanic Crust at Fast- and Slow-spreading Ridges Revealed by Geospeedometry. Journal of Petrology, 2007, 48, 2211-2231.	1.1	95
34	The Tambien Group, Ethiopia: An early Cryogenian (ca. 800–735Ma) Neoproterozoic sequence in the Arabian–Nubian Shield. Precambrian Research, 2006, 147, 79-99.	1.2	51
35	Chemical and thermal constraints on focussed fluid flow in the lower oceanic crust. Numerische Mathematik, 2006, 306, 389-427.	0.7	52
36	Constraining the cooling rate of the lower oceanic crust: a new approach applied to the Oman ophiolite. Earth and Planetary Science Letters, 2002, 199, 127-146.	1.8	87

Gawen R T Jenkin

#	Article	IF	CITATIONS
37	An investigation of closure temperature of the biotite Rb-Sr system: The importance of cation exchange. Geochimica Et Cosmochimica Acta, 2001, 65, 1141-1160.	1.6	76
38	Do cooling paths derived from mica Rb-Sr data reflect true cooling paths?. Geology, 1997, 25, 907.	2.0	48
39	Carboniferous dykes as monitors of post-Caledonian fluid events in West Connacht, Ireland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1997, 88, 225-243.	1.0	3
40	The Effect of Deformation on Oxygen Isotope Exchange in Quartz and Feldspar and the Significance of Isotopic Temperatures in Mylonites. Journal of Geology, 1997, 105, 193-204.	0.7	20
41	A fluid inclusion and stable isotope study of 200 Ma of fluid evolution in the Galway Granite, Connemara, Ireland. Contributions To Mineralogy and Petrology, 1997, 129, 120-142.	1.2	31
42	Rbî—,Sr closure temperatures in bi-mineralic rocks: a mode effect and test for different diffusion models. Chemical Geology, 1995, 122, 227-240.	1.4	65
43	Oxygen and hydrogen isotopic evolution of Variscan crustal fluids, south Cornwall, U.K Chemical Geology, 1995, 123, 239-254.	1.4	46
44	An empirical estimate of the diffusion rate of oxygen in diopside. Journal of Metamorphic Geology, 1994, 12, 89-97.	1.6	19
45	Oxygen isotope exchange and closure temperatures in cooling rocks. Journal of Metamorphic Geology, 1994, 12, 221-235.	1.6	58
46	Stable isotopic and fluid inclusion evidence for meteoric fluid penetration into an active mountain belt; Alpine Schist, New Zealand. Journal of Metamorphic Geology, 1994, 12, 429-444.	1.6	96
47	The Origin of Rapakivi Texture. Journal of Petrology, 1994, 35, 963-981.	1.1	45
48	A stable isotope study of retrograde alteration in SW Connemara, Ireland. Contributions To Mineralogy and Petrology, 1992, 110, 269-288.	1.2	26
49	Geological, fluid inclusion and stable isotope studies of Mo mineralization, Galway Granite, Ireland. Mineralium Deposita, 1992, 27, 314.	1.7	19
50	Fluid disturbed hornblende K-Ar ages from the Dalradian rocks of Connemara, Western Ireland. Journal of the Geological Society, 1991, 148, 985-992.	0.9	34
51	Modeling of mineral δ180 values in an igneous aureole: Closed-system model predicts apparent open-system δ180 values. Geology, 1991, 19, 1185.	2.0	27
52	COOL: A FORTRAN-77 computer program for modeling stable isotopes in cooling closed systems. Computers and Geosciences, 1991, 17, 391-412.	2.0	26
53	Textural evolution of the rapakivi granites, south Greenland ?Sr, O and H isotopic investigations. Contributions To Mineralogy and Petrology, 1991, 107, 459-471.	1.2	19