
Robert J Schwartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transient Transgenics: An Efficient Method to Identify Gene Regulatory Elements. Methods in Molecular Biology, 2021, 2319, 119-136.	0.4	0
2	Generation of Transgenic Mice that Conditionally Overexpress Tenascin-C. Frontiers in Immunology, 2021, 12, 620541.	2.2	7
3	Smyd1 Orchestrates Early Heart Development Through Positive and Negative Gene Regulation. Frontiers in Cell and Developmental Biology, 2021, 9, 654682.	1.8	9
4	The Spatiotemporal Expression of Notch1 and Numb and Their Functional Interaction during Cardiac Morphogenesis. Cells, 2021, 10, 2192.	1.8	8
5	H19Xâ€encoded miRâ€322(424)/miRâ€503 regulates muscle mass by targeting translation initiation factors. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 2174-2186.	2.9	9
6	Conversion of human cardiac progenitor cells into cardiac pacemaker-like cells. Journal of Molecular and Cellular Cardiology, 2020, 138, 12-22.	0.9	20
7	A Highly Conductive 3D Cardiac Patch Fabricated Using Cardiac Myocytes Reprogrammed from Human Adipogenic Mesenchymal Stem Cells. Cardiovascular Engineering and Technology, 2020, 11, 205-218.	0.7	16
8	βâ€Adrenergic stimuli and rotating suspension culture enhance conversion of human adipogenic mesenchymal stem cells into highly conductive cardiac progenitors. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 306-318.	1.3	11
9	CRISPRâ€Cas9–induced IGF1 gene activation as a tool for enhancing muscle differentiation via multiple isoform expression. FASEB Journal, 2020, 34, 555-570.	0.2	7
10	3D Bioprinting the Cardiac Purkinje System Using Human Adipogenic Mesenchymal Stem Cell Derived Purkinje Cells. Cardiovascular Engineering and Technology, 2020, 11, 587-604.	0.7	18
11	Response to Zhao and Huang's Commentary Letter, "Conversion of Human Cardiac Progenitor Cells using Reprogramming Factors into Heterogeneous Cardiac Pacemaker-like Cellsâ€, regarding our Manuscript: "Conversion of Human Cardiac Progenitor Cells into Cardiac Pacemaker-like Cells". Journal of Molecular and Cellular Cardiology, 2020, 141, 105-106.	0.9	0
12	C.Bâ€17 <scp>SCID</scp> mice develop epicardial calcinosis with unaltered cardiac function. Fundamental and Clinical Pharmacology, 2019, 33, 25-30.	1.0	0
13	Discovery of vascular Rho kinase (ROCK) inhibitory peptides. Experimental Biology and Medicine, 2019, 244, 940-951.	1.1	2
14	Aberrant expression of embryonic mesendoderm factor MESP1 promotes tumorigenesis. EBioMedicine, 2019, 50, 55-66.	2.7	5
15	Human Cardiac Progenitors Grown Under Microgravity Conditions Generate Myocytes With High Conduction Velocities. FASEB Journal, 2019, 33, 676.3.	0.2	0
16	RERE deficiency leads to decreased expression of GATA4 and the development of ventricular septal defects. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	4
17	Cardiac-specific developmental and epigenetic functions of Jarid2 during embryonic development. Journal of Biological Chemistry, 2018, 293, 11659-11673.	1.6	23
18	Reprogramming Human Cardiac Progenitor Cells into Pacemaker Cells for Heart Repair. FASEB Journal, 2018, 32, 839.4.	0.2	0

#	Article	IF	CITATIONS
19	The CSRP2BP histone acetyltransferase drives smooth muscle gene expression. Nucleic Acids Research, 2017, 45, 3046-3058.	6.5	13
20	Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications. ASAIO Journal, 2017, 63, 333-341.	0.9	14
21	YY1 Expression Is Sufficient for the Maintenance of Cardiac Progenitor Cell State. Stem Cells, 2017, 35, 1913-1923.	1.4	13
22	HIRA deficiency in muscle fibers causes hypertrophy and susceptibility to oxidative stress. Journal of Cell Science, 2017, 130, 2551-2563.	1.2	9
23	Single-Cell Lineage Tracing Reveals that Oriented Cell Division Contributes to Trabecular Morphogenesis and Regional Specification. Cell Reports, 2016, 15, 158-170.	2.9	45
24	The All-Chemical Approach. Circulation Research, 2016, 119, 505-507.	2.0	1
25	miR-322/-503 cluster is expressed in the earliest cardiac progenitor cells and drives cardiomyocyte specification. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9551-9556.	3.3	66
26	Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts. Scientific Reports, 2016, 6, 31457.	1.6	24
27	PKG-1α mediates GATA4 transcriptional activity. Cellular Signalling, 2016, 28, 585-594.	1.7	10
28	Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Developmental Biology, 2016, 410, 86-97.	0.9	32
29	Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis. DMM Disease Models and Mechanisms, 2016, 9, 335-345.	1.2	21
30	Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. DMM Disease Models and Mechanisms, 2016, 9, 347-359.	1.2	29
31	Regulation of alternative polyadenylation by Nkx2-5 and Xrn2 during mouse heart development. ELife, 2016, 5, .	2.8	18
32	Genome-Wide Identification of MESP1 Targets Demonstrates Primary Regulation Over Mesendoderm Gene Activity. Stem Cells, 2015, 33, 3254-3265.	1.4	26
33	Smyd1 Facilitates Heart Development by Antagonizing Oxidative and ER Stress Responses. PLoS ONE, 2015, 10, e0121765.	1.1	47
34	Persistent Noggin arrests cardiomyocyte morphogenesis and results in early in utero lethality. Developmental Dynamics, 2015, 244, 457-467.	0.8	5
35	<i>Hhex</i> and <i>Cer1</i> Mediate the Sox17 Pathway for Cardiac Mesoderm Formation in Embryonic Stem Cells. Stem Cells, 2014, 32, 1515-1526.	1.4	24
36	Steroid Receptor Coactivator-2 ls a Dual Regulator of Cardiac Transcription Factor Function. Journal of Biological Chemistry, 2014, 289, 17721-17731.	1.6	13

#	Article	IF	CITATIONS
37	Functional analysis of limb transcriptional enhancers in the mouse. Evolution & Development, 2014, 16, 207-223.	1.1	23
38	Abstract 19676: A Molecular Switch Regulating Heart and Pancreatic Development. Circulation, 2014, 130, .	1.6	0
39	Inactivation of Cdc42 in neural crest cells causes craniofacial and cardiovascular morphogenesis defects. Developmental Biology, 2013, 383, 239-252.	0.9	46
40	Brief Report: Oct4 and Canonical Wnt Signaling Regulate the Cardiac Lineage Factor Mesp1 Through a Tcf/Lef-Oct4 Composite Element. Stem Cells, 2013, 31, 1213-1217.	1.4	30
41	Histone H3 lysine 9 methyltransferases, G9a and GLP are essential for cardiac morphogenesis. Mechanisms of Development, 2013, 130, 519-531.	1.7	39
42	Whole animal knockout of smooth muscle alphaâ€actin does not alter excisional wound healing or the fibroblastâ€toâ€myofibroblast transition. Wound Repair and Regeneration, 2013, 21, 166-176.	1.5	53
43	Associations between the Rho kinase-1 catalytic and PH domain regulatory unit. Journal of Molecular Graphics and Modelling, 2013, 46, 74-82.	1.3	5
44	A cell-autonomous role of Cited2 in controlling myocardial and coronary vascular development. European Heart Journal, 2013, 34, 2557-2565.	1.0	26
45	MicroRNA-17-92, a Direct Ap-2α Transcriptional Target, Modulates T-Box Factor Activity in Orofacial Clefting. PLoS Genetics, 2013, 9, e1003785.	1.5	68
46	Brief report: SRF-dependent MiR-210 silences the sonic hedgehog signaling during cardiopoesis. Stem Cells, 2013, 31, 2279-2285.	1.4	16
47	Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Research, 2013, 23, 1075-1090.	5.7	176
48	Transient Mesp1 expression. Transcription, 2013, 4, 92-96.	1.7	9
49	Protein Tyrosine Phosphatase-Like A Regulates Myoblast Proliferation and Differentiation through MyoG and the Cell Cycling Signaling Pathway. Molecular and Cellular Biology, 2012, 32, 297-308.	1.1	26
50	Airways in smooth muscle α-actin null mice experience a compensatory mechanism that modulates their contractile response. Journal of Applied Physiology, 2012, 112, 898-903.	1.2	2
51	Mice Harboring Gnrhr E90K, a Mutation that Causes Protein Misfolding and Hypogonadotropic Hypogonadism in Humans, Exhibit Testis Size Reduction and Ovulation Failure. Molecular Endocrinology, 2012, 26, 1847-1856.	3.7	22
52	Reprogrammed Cardiac Fibroblasts to the Rescue of Heart Failure. Circulation Research, 2012, 111, 831-832.	2.0	3
53	Mechanism of fibrotic cardiomyopathy in mice expressing truncated Rhoâ€associated coiledâ€coil protein kinase 1. FASEB Journal, 2012, 26, 2105-2116.	0.2	28
54	Weighing in on Heart Failure: The Role of SERCA2a SUMOylation. Circulation Research, 2012, 110, 198-199.	2.0	12

#	Article	IF	CITATIONS
55	Epistatic Rescue of Nkx2.5 Adult Cardiac Conduction Disease Phenotypes by Prospero-Related Homeobox Protein 1 and HDAC3. Circulation Research, 2012, 111, e19-31.	2.0	32
56	Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nature Medicine, 2012, 18, 1560-1569.	15.2	174
57	Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13016-13021.	3.3	199
58	Targeted Expression of Cre Recombinase Provokes Placental-Specific DNA Recombination in Transgenic Mice. PLoS ONE, 2012, 7, e29236.	1.1	15
59	Conditional Ablation of Ezh2 in Murine Hearts Reveals Its Essential Roles in Endocardial Cushion Formation, Cardiomyocyte Proliferation and Survival. PLoS ONE, 2012, 7, e31005.	1.1	50
60	Regulation of Insulin-Like Growth Factor Signaling by Yap Governs Cardiomyocyte Proliferation and Embryonic Heart Size. Science Signaling, 2011, 4, ra70.	1.6	477
61	Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Developmental Biology, 2011, 356, 308-322.	0.9	55
62	Defective sumoylation pathway directs congenital heart disease. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 468-476.	1.6	70
63	Transcription factor genes <i>Smad4</i> and <i>Gata4</i> cooperatively regulate cardiac valve development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4006-4011.	3.3	98
64	Sumoylation and Regulation of Cardiac Gene Expression. Circulation Research, 2010, 107, 19-29.	2.0	65
65	The FGF-BMP Signaling Axis Regulates Outflow Tract Valve Primordium Formation by Promoting Cushion Neural Crest Cell Differentiation. Circulation Research, 2010, 107, 1209-1219.	2.0	42
66	Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ. Genes and Development, 2010, 24, 1614-1619.	2.7	156
67	SUMO-Specific Protease 2 Is Essential for Suppression of Polycomb Group Protein-Mediated Gene Silencing during Embryonic Development. Molecular Cell, 2010, 38, 191-201.	4.5	188
68	Characterization and In Vivo Pharmacological Rescue of a Wnt2-Gata6 Pathway Required for Cardiac Inflow Tract Development. Developmental Cell, 2010, 18, 275-287.	3.1	108
69	SMYD1, the myogenic activator, is a direct target of serum response factor and myogenin. Nucleic Acids Research, 2009, 37, 7059-7071.	6.5	52
70	Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation. Cardiovascular Research, 2009, 83, 511-518.	1.8	89
71	Transient Expression of FRNK Reveals Stage-Specific Requirement for Focal Adhesion Kinase Activity in Cardiac Growth. Circulation Research, 2009, 104, 1201-1208.	2.0	37
72	Genetic Fate Mapping Identifies Second Heart Field Progenitor Cells As a Source of Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation Research, 2009, 104, 1076-1084.	2.0	135

#	Article	IF	CITATIONS
73	T-box 2, a mediator of Bmp-Smad signaling, induced hyaluronan synthase 2 and Tgfl̂22 expression and endocardial cushion formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18604-18609.	3.3	74
74	A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf–Hirschhorn syndrome. Nature, 2009, 460, 287-291.	13.7	336
75	Signaling via the Tgf-β type I receptor Alk5 in heart development. Developmental Biology, 2008, 322, 208-218.	0.9	147
76	MicroRNA Regulation of Cell Lineages in Mouse and Human Embryonic Stem Cells. Cell Stem Cell, 2008, 2, 219-229.	5.2	577
77	Aging Down-Regulates the Transcription Factor E2A, Activation-Induced Cytidine Deaminase, and Ig Class Switch in Human B Cells. Journal of Immunology, 2008, 180, 5283-5290.	0.4	276
78	Retinoic acid deficiency alters second heart field formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2913-2918.	3.3	186
79	Regulation of Cardiac Specific nkx2.5 Gene Activity by Small Ubiquitin-like Modifier. Journal of Biological Chemistry, 2008, 283, 23235-23243.	1.6	46
80	Serum response factor orchestrates nascent sarcomerogenesis and silences the biomineralization gene program in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17824-17829.	3.3	107
81	Conditional Deletion of Focal Adhesion Kinase Leads to Defects in Ventricular Septation and Outflow Tract Alignment. Molecular and Cellular Biology, 2007, 27, 5352-5364.	1.1	59
82	Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proceedings of the United States of America, 2007, 104, 3859-3864.	3.3	160
83	LIM-only protein, CRP2, switched on smooth muscle gene activity in adult cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 157-162.	3.3	45
84	Identification of a novel role of ZIC3 in regulating cardiac development. Human Molecular Genetics, 2007, 16, 1649-1660.	1.4	25
85	Myocardin Sumoylation Transactivates Cardiogenic Genes in Pluripotent 10T1/2 Fibroblasts. Molecular and Cellular Biology, 2007, 27, 622-632.	1.1	74
86	Dysregulation of Cardiogenesis, Cardiac Conduction, and Cell Cycle in Mice Lacking miRNA-1-2. Cell, 2007, 129, 303-317.	13.5	1,341
87	Cardiovascular abnormalities inFolr1 knockout mice and folate rescue. Birth Defects Research Part A: Clinical and Molecular Teratology, 2007, 79, 257-268.	1.6	47
88	Thymosin \hat{I}^24 induces adult epicardial progenitor mobilization and neovascularization. Nature, 2007, 445, 177-182.	13.7	605
89	Serum response factor micromanaging cardiogenesis. Current Opinion in Cell Biology, 2007, 19, 618-627.	2.6	114
90	Thymosin beta-4 Is Essential for Coronary Vessel Development and Promotes Neovascularization via Adult Epicardium. Annals of the New York Academy of Sciences, 2007, 1112, 171-188.	1.8	64

#	Article	IF	CITATIONS
91	CAMTA in Cardiac Hypertrophy. Cell, 2006, 125, 427-429.	13.5	8
92	Cardiac-Specific Ablation of G-Protein Receptor Kinase 2 Redefines Its Roles in Heart Development and β-Adrenergic Signaling. Circulation Research, 2006, 99, 996-1003.	2.0	152
93	Deletion of Smooth Muscle α-Actin Alters Blood–Retina Barrier Permeability and Retinal Function. , 2006, 47, 2693.		33
94	Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14495-14500.	3.3	205
95	Cardiac-Specific Deletion of Gata4 Reveals Its Requirement for Hypertrophy, Compensation, and Myocyte Viability. Circulation Research, 2006, 98, 837-845.	2.0	384
96	Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB Journal, 2006, 20, 916-925.	0.2	195
97	Serum response factor MADS box serine -162 phosphorylation switches proliferation and myogenic gene programs. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4516-4521.	3.3	64
98	Signaling Mechanism of Renal Fibrosis in Unilateral Ureteral Obstructive Kidney Disease in ROCK1 Knockout Mice. Journal of the American Society of Nephrology: JASN, 2006, 17, 3105-3114.	3.0	66
99	Long Range Regulatory Sequences Delimited by Progressive Deletions of a Mouse Nkx2-5-GFP-BAC Clone: A New Approach to Identify Distal Gene Regulators in Evolutionarily Conserved Non-Coding Sequences. Current Genomics, 2005, 6, 523-534.	0.7	1
100	Serum Response Factor, an Enriched Cardiac Mesoderm Obligatory Factor, Is a Downstream Gene Target for Tbx Genes. Journal of Biological Chemistry, 2005, 280, 11816-11828.	1.6	48
101	Conditional Mutagenesis of the Murine Serum Response Factor Gene Blocks Cardiogenesis and the Transcription of Downstream Gene Targets. Journal of Biological Chemistry, 2005, 280, 32531-32538.	1.6	116
102	Identification of Direct Serum-response Factor Gene Targets during Me2SO-induced P19 Cardiac Cell Differentiation. Journal of Biological Chemistry, 2005, 280, 19115-19126.	1.6	74
103	Complex cardiac Nkx2-5 gene expression activated by noggin-sensitive enhancers followed by chamber-specific modules. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13490-13495.	3.3	39
104	Recruitment of the Androgen Receptor via Serum Response Factor Facilitates Expression of a Myogenic Gene. Journal of Biological Chemistry, 2005, 280, 7786-7792.	1.6	45
105	Threshold-specific requirements for Bmp4 in mandibular development. Developmental Biology, 2005, 283, 282-293.	0.9	128
106	Morphogenesis of the right ventricle requires myocardial expression of Gata4. Journal of Clinical Investigation, 2005, 115, 1522-1531.	3.9	232
107	Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6975-6980.	3.3	251
108	Msx2 and Necdin Combined Activities Are Required for Smooth Muscle Differentiation in Mesoangioblast Stem Cells. Circulation Research, 2004, 94, 1571-1578.	2.0	79

#	Article	IF	CITATIONS
109	SUMO-1 Modification Activated GATA4-dependent Cardiogenic Gene Activity. Journal of Biological Chemistry, 2004, 279, 49091-49098.	1.6	89
110	Bmp4 signaling is required for outflow-tract septation and branchial-arch artery remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4489-4494.	3.3	203
111	Disruption of Rho signaling results in progressive atrioventricular conduction defects while ventricular function remains preserved. FASEB Journal, 2004, 18, 857-859.	0.2	44
112	Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3338-3345.	3.3	228
113	The Cardiac Determination Factor, Nkx2-5, Is Activated by Mutual Cofactors GATA-4 and Smad1/4 via a Novel Upstream Enhancer. Journal of Biological Chemistry, 2004, 279, 10659-10669.	1.6	150
114	Cardiac Muscle Plasticity in Adult and Embryo by Heart-Derived Progenitor Cells. Annals of the New York Academy of Sciences, 2004, 1015, 182-189.	1.8	132
115	RNA polymerase II C-terminal domain kinases in heart failure. Journal of Cardiac Failure, 2003, 9, S4.	0.7	0
116	Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Molecular Genetics and Metabolism, 2003, 80, 207-215.	0.5	249
117	Cysteine-Rich LIM-Only Proteins CRP1 and CRP2 Are Potent Smooth Muscle Differentiation Cofactors. Developmental Cell, 2003, 4, 107-118.	3.1	215
118	Targeted Expression of IGFâ€1 Transgene to Skeletal Muscle Accelerates Muscle and Motor Neuron Regeneration. FASEB Journal, 2003, 17, 53-55.	0.2	102
119	Calcium/Calmodulin-dependent Protein Kinase Activates Serum Response Factor Transcription Activity by Its Dissociation from Histone Deacetylase, HDAC4. Journal of Biological Chemistry, 2003, 278, 20047-20058.	1.6	112
120	Inhibitory Cardiac Transcription Factor, SRF-N, Is Generated by Caspase 3 Cleavage in Human Heart Failure and Attenuated by Ventricular Unloading. Circulation, 2003, 108, 407-413.	1.6	74
121	Persistent IGFâ€I overexpression in skeletal muscle transiently enhances DNA accretion and growth 1. FASEB Journal, 2003, 17, 59-60.	0.2	63
122	Combinatorial Expression of GATA4, Nkx2-5, and Serum Response Factor Directs Early Cardiac Gene Activity. Journal of Biological Chemistry, 2002, 277, 25775-25782.	1.6	150
123	Enhanced animal growth via ligand regulated GHRH myogenic injectable vectors. FASEB Journal, 2002, 16, 426-428.	0.2	36
124	Transforming Growth Factor-Î ² Induction of Smooth Muscle Cell Phenotpye Requires Transcriptional and Post-transcriptional Control of Serum Response Factor. Journal of Biological Chemistry, 2002, 277, 6287-6295.	1.6	80
125	Hop Is an Unusual Homeobox Gene that Modulates Cardiac Development. Cell, 2002, 110, 713-723.	13.5	256
126	Developmental expression of serum response factor in the rat central nervous system. Developmental Brain Research, 2002, 138, 81-86.	2.1	19

#	Article	IF	CITATIONS
127	Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice. Mechanisms of Ageing and Development, 2001, 122, 1303-1320.	2.2	26
128	βl integrin and organized actin filaments facilitate cardiomyocyteâ€specific RhoAâ€dependent activation of the skeletal αâ€actin promoter. FASEB Journal, 2001, 15, 785-796.	0.2	70
129	Physical Interaction between the MADS Box of Serum Response Factor and the TEA/ATTS DNA-binding Domain of Transcription Enhancer Factor-1. Journal of Biological Chemistry, 2001, 276, 10413-10422.	1.6	68
130	TNFâ€Î± regulates early differentiation of C2C12 myoblasts in an autocrine fashion. FASEB Journal, 2001, 15, 1413-1415.	0.2	80
131	GATA-4 and Serum Response Factor Regulate Transcription of the Muscle-specific Carnitine Palmitoyltransferase I β in Rat Heart. Journal of Biological Chemistry, 2001, 276, 1026-1033.	1.6	46
132	TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nature Medicine, 2000, 6, 556-563.	15.2	324
133	Chips Ahoy. Circulation, 2000, 102, 3026-3027.	1.6	12
134	Insulin-like Growth Factor-I Extends in VitroReplicative Life Span of Skeletal Muscle Satellite Cells by Enhancing G1/S Cell Cycle Progression via the Activation of Phosphatidylinositol 3′-Kinase/Akt Signaling Pathway. Journal of Biological Chemistry, 2000, 275, 35942-35952.	1.6	194
135	Impaired vascular contractility and blood pressure homeostasis in the smooth muscle αâ€actin null mouse. FASEB Journal, 2000, 14, 2213-2220.	0.2	184
136	Cardiac Tissue Enriched Factors Serum Response Factor and GATA-4 Are Mutual Coregulators. Molecular and Cellular Biology, 2000, 20, 7550-7558.	1.1	180
137	The Smooth Muscle Î ³ -Actin Gene Promoter Is a Molecular Target for the Mouse bagpipe Homologue, mNkx3-1, and Serum Response Factor. Journal of Biological Chemistry, 2000, 275, 39061-39072.	1.6	81
138	Expression of Chick Tbx-2, Tbx-3, and Tbx-5 Genes during Early Heart Development: Evidence for BMP2 Induction of Tbx2. Developmental Biology, 2000, 228, 95-105.	0.9	196
139	Transient cardiac expression of the tinman-family homeobox gene, XNkx2-10. Mechanisms of Development, 2000, 91, 369-373.	1.7	18
140	SRF protein is upregulated during stretch-induced hypertrophy of rooster ALD muscle. Journal of Applied Physiology, 1999, 86, 1793-1799.	1.2	42
141	Local insulinâ€like growth factor I expression induces physiologic, then pathologic, cardiac hypertrophy in transgenic mice. FASEB Journal, 1999, 13, 1923-1929.	0.2	149
142	Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nature Biotechnology, 1999, 17, 241-245.	9.4	219
143	Myogenic expression of an injectable protease-resistant growth hormone–releasing hormone augments long-term growth in pigs. Nature Biotechnology, 1999, 17, 1179-1183.	9.4	100
144	Evidence for a Role of Smad6 in Chick Cardiac Development. Developmental Biology, 1999, 215, 48-61.	0.9	82

#	Article	IF	CITATIONS
145	Dominant Negative Murine Serum Response Factor: Alternative Splicing within the Activation Domain Inhibits Transactivation of Serum Response Factor Binding Targets. Molecular and Cellular Biology, 1999, 19, 4582-4591.	1.1	87
146	The Developmentally Regulated Expression of Serum Response Factor Plays a Key Role in the Control of Smooth Muscle-Specific Genes. Developmental Biology, 1998, 194, 18-37.	0.9	84
147	A Constitutive Mutation ofALK5Disrupts Cardiac Looping and Morphogenesis in Mice. Developmental Biology, 1998, 199, 72-79.	0.9	39
148	RhoA Signaling via Serum Response Factor Plays an Obligatory Role in Myogenic Differentiation. Journal of Biological Chemistry, 1998, 273, 30287-30294.	1.6	147
149	GATA-4 and Nkx-2.5 Coactivate Nkx-2 DNA Binding Targets: Role for Regulating Early Cardiac Gene Expression. Molecular and Cellular Biology, 1998, 18, 3405-3415.	1.1	295
150	Skeletal muscle myocytes undergo protein loss and reactive oxygenâ€mediated NFâ€₽B activation in response to tumor necrosis factorα. FASEB Journal, 1998, 12, 871-880.	0.2	403
151	Organization and Myogenic Restricted Expression of the Murine Serum Response Factor Gene. Journal of Biological Chemistry, 1997, 272, 18222-18231.	1.6	133
152	Chicken Nkx-2.8: A Novel Homeobox Gene Expressed in Early Heart Progenitor Cells and Pharyngeal Pouch-2 and -3 Endoderm. Developmental Biology, 1997, 188, 295-311.	0.9	59
153	Enhanced growth by ectopic expression of growth hormone releasing hormone using an injectable myogenic vector. Nature Biotechnology, 1997, 15, 1285-1289.	9.4	52
154	Avian Serum Response Factor Expression Restricted Primarily to Muscle Cell Lineages Is Required for α-Actin Gene Transcription. Developmental Biology, 1996, 177, 250-264.	0.9	181
155	Activation of the cardiac α-actin promoter depends upon serum response factor,Tinman homologue, Nkx-2.5, and intact serum response elements. Genesis, 1996, 19, 119-130.	3.3	112
156	Serum Response Factor Mediates AP-1-dependent Induction of the Skeletal α-Actin Promoter in Ventricular Myocytes. Journal of Biological Chemistry, 1996, 271, 10827-10833.	1.6	96
157	The Myogenic Regulatory Factor MRF4 Represses the Cardiac α-Actin Promoter through a Negative-acting N-terminal Protein Domain. Journal of Biological Chemistry, 1996, 271, 31688-31694.	1.6	12
158	Myogenic Vector Expression of Insulin-like Growth Factor I Stimulates Muscle Cell Differentiation and Myofiber Hypertrophy in Transgenic Mice. Journal of Biological Chemistry, 1995, 270, 12109-12116.	1.6	556
159	Identification of Novel DNA Binding Targets and Regulatory Domains of a Murine Tinman Homeodomain Factor, nkx-2.5. Journal of Biological Chemistry, 1995, 270, 15628-15633.	1.6	277
160	Cytoplasmic ?-actin promoter produces germ cell and preimplantation embryonic transgene expression. Molecular Reproduction and Development, 1993, 34, 117-126.	1.0	18
161	Differential detection of multiple DNA-binding complexes using dissimilar polyanion competitors. Nucleic Acids Research, 1992, 20, 140-140.	6.5	15
162	Analysis of a CR1 (chicken repeat) sequence flanking the 5' end of the gene encoding α-skeletal actin. Gene, 1990, 88, 173-180.	1.0	3

#	Article	IF	CITATIONS
163	Utility of firefly luciferase as a reporter gene for promoter activity in transgenic mice. Nucleic Acids Research, 1988, 16, 4159-4159.	6.5	48
164	HIGH PERFORMANCE PURIFICATION OF GLYCOLYTIC ENZYMES AND CREATINE KINASE FRCM CHICKEN BREAST MUSCLE AND PREPARATION OF THEIR SPECIFIC IMMUNOLOGICAL PROBES. Preparative Biochemistry and Biotechnology, 1987, 17, 157-172.	0.4	1
165	Tissue restricted and stage specific transcription is maintained within 411 nucleotides flanking the 5′ end of the chicken α-skeletal actin gene. Nucleic Acids Research, 1986, 14, 1683-1701.	6.5	96
166	Intron-dependent evolution of chicken glyceraldehyde phosphate dehydrogenase gene. Nature, 1985, 313, 498-500.	13.7	83
167	The complete sequence of the chicken α-cardiac actin gene: a highly conserved vertebrate gene. Nucleic Acids Research, 1985, 13, 1223-1237.	6.5	79
168	Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature, 1983, 302, 218-223.	13.7	245
169	Differentiation of actin-containing filaments during chick skeletal myogenesis. Experimental Cell Research, 1979, 121, 167-178.	1.2	7
170	Alterations in iodinated cell surface proteins during myogenesis. Experimental Cell Research, 1978, 113, 445-450.	1.2	43
171	EFFECT OF PROGESTERONE RECEPTORS ON TRANSCRIPTION. Annals of the New York Academy of Sciences, 1977, 286, 147-160.	1.8	13
172	Steroid hormone receptor fraction stimulation of RNA synthesis: A caution. Biochemical and Biophysical Research Communications, 1976, 69, 106-113.	1.0	13
173	A review of regulation of gene expression by steroid hormone receptors. The Journal of Steroid Biochemistry, 1976, 7, 1151-1159.	1.3	59
174	Changes in Protein Synthesis in the Morphogenesis of Fundulus heteroclitus. Nature, 1973, 245, 376-379.	13.7	11
175	Steroid Control of Genomic Expression in Embryonic Chick Retina. Nature: New Biology, 1972, 237, 121-125.	4.5	27