Wen Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013246/publications.pdf

Version: 2024-02-01

933447 1281871 11 451 10 11 citations h-index g-index papers 11 11 11 279 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Urchin-like Spinel MgV ₂ O ₄ as a Cathode Material for Aqueous Zinc-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 3681-3688.	6.7	99
2	KO.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. Journal of Alloys and Compounds, 2020, 819, 152971.	5.5	83
3	Adjusting the Valence State of Vanadium in VO ₂ (B) by Extracting Oxygen Anions for Highâ€Performance Aqueous Zincâ€Ion Batteries. ChemSusChem, 2021, 14, 971-978.	6.8	63
4	The Current Developments and Perspectives of V ₂ O ₅ as Cathode for Rechargeable Aqueous Zincâ€lon Batteries. Energy Technology, 2021, 9, 2000789.	3.8	55
5	FeVO4ânH2O@rGO nanocomposite as high performance cathode materials for aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2020, 818, 153372.	5.5	46
6	Unexpected discovery of magnesium-vanadium spinel oxide containing extractable Mg2+ as a high-capacity cathode material for magnesium ion batteries. Chemical Engineering Journal, 2021, 405, 127005.	12.7	34
7	Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2021, 884, 161147.	5.5	20
8	Constructing a disorder/order structure for enhanced magnesium storage. Chemical Engineering Journal, 2020, 382, 123049.	12.7	18
9	Charged-optimized ZnO/ ZnV2O4 composite hollow microspheres robust zinc-ion storage capacity. Journal of Solid State Chemistry, 2021, 301, 122371.	2.9	12
10	Oxygen vacancy engineering boosted manganese vanadate toward high stability aqueous zinc ion batteries. Journal of Alloys and Compounds, 2022, 919, 165804.	5.5	12
11	Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries. Nanotechnology, 2021, 32, 315405.	2.6	9