
Feng Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013234/publications.pdf Version: 2024-02-01

FENC LIANC

#	Article	IF	CITATIONS
1	Pt/In ₂ S ₃ /CdS/Cu ₂ ZnSnS ₄ Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation. Journal of the American Chemical Society, 2015, 137, 13691-13697.	13.7	262
2	Pure Sulfide Cu ₂ ZnSnS ₄ Thin Film Solar Cells Fabricated by Preheating an Electrodeposited Metallic Stack. Advanced Energy Materials, 2014, 4, 1301381.	19.5	144
3	Over 1% Efficient Unbiased Stable Solar Water Splitting Based on a Sprayed Cu ₂ ZnSnS ₄ Photocathode Protected by a HfO ₂ Photocorrosion-Resistant Film. ACS Energy Letters, 2018, 3, 1875-1881.	17.4	82
4	3.17% efficient Cu ₂ ZnSnS ₄ –BiVO ₄ integrated tandem cell for standalone overall solar water splitting. Energy and Environmental Science, 2021, 14, 1480-1489.	30.8	74
5	Preparation and properties of AZO thin films on different substrates. Progress in Natural Science: Materials International, 2010, 20, 44-48.	4.4	73
6	Cu ₂ ZnSnS ₄ thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique. RSC Advances, 2015, 5, 77565-77571.	3.6	58
7	Preparation and properties of SnS film grown by two-stage process. Applied Surface Science, 2011, 257, 4901-4905.	6.1	51
8	Promising GeSe Nanosheet-Based Thin-Film Photocathode for Efficient and Stable Overall Solar Water Splitting. ACS Catalysis, 2019, 9, 3090-3097.	11.2	48
9	Wittichenite semiconductor of Cu3BiS3 films for efficient hydrogen evolution from solar driven photoelectrochemical water splitting. Nature Communications, 2021, 12, 3795.	12.8	48
10	Effect of Indium Doping on Surface Optoelectrical Properties of Cu ₂ ZnSnS ₄ Photoabsorber and Interfacial/Photovoltaic Performance of Cadmium Free In ₂ S ₃ /Cu ₂ ZnSnS ₄ Heterojunction Thin Film Solar Cell. Chemistry of Materials, 2016, 28, 3283-3291.	6.7	45
11	MoSx-CdS/Cu2ZnSnS4-based thin film photocathode for solar hydrogen evolution from water. Applied Catalysis B: Environmental, 2020, 268, 118438.	20.2	41
12	Preparation and Properties of Cu2ZnSnS4Absorber and Cu2ZnSnS4/Amorphous Silicon Thin-Film Solar Cell. Applied Physics Express, 2011, 4, 074101.	2.4	39
13	Preparation of SnS Film by Sulfurization and SnS/a-Si Heterojunction Solar Cells. Journal of the Electrochemical Society, 2012, 159, H235-H238.	2.9	38
14	Impact of alloying duration of an electrodeposited Cu/Sn/Zn metallic stack on properties of Cu ₂ ZnSnS ₄ absorbers for thinâ€film solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1884-1895.	8.1	38
15	CdxZn1-xS/Sb2Se3 thin film photocathode for efficient solar water splitting. Applied Catalysis B: Environmental, 2021, 286, 119872.	20.2	37
16	Photocathode-assisted redox flow desalination. Green Chemistry, 2020, 22, 4133-4139.	9.0	29
17	Environmentally friendly Cu2ZnSnS4-based photocathode modified with a ZnS protection layer for efficient solar water splitting. Journal of Colloid and Interface Science, 2019, 536, 9-16.	9.4	28
18	Optical and Electrical Properties of Cu2ZnSnS4 Film Prepared by Sulfurization Method. Journal of Electronic Materials, 2012, 41, 2204-2209.	2.2	26

Feng Jiang

#	Article	IF	CITATIONS
19	Preparation of Cu2ZnSnS4 film by sulfurizing solution deposited precursors. Applied Surface Science, 2012, 261, 189-192.	6.1	24
20	Coâ€Electrodeposited Cu ₂ ZnSnS ₄ Thin Film Solar Cell and Cu ₂ ZnSnS ₄ Solar Cell – BiVO ₄ Tandem Device for Unbiased Solar Water Splitting. Solar Rrl, 2018, 2, 1700205.	5.8	19
21	Efficient carrier transfer route via the bridge of C60 particle to TiO2 nanoball based coverage layer enables stable and efficient cadmium free GeSe photocathode for solar hydrogen evolution. Applied Catalysis B: Environmental, 2021, 297, 120437.	20.2	19
22	Surface plasmon resonance effect of a Pt-nano-particles-modified TiO2 nanoball overlayer enables a significant enhancement in efficiency to 3.5% for a Cu2ZnSnS4-based thin film photocathode used for solar water splitting. Chemical Engineering Journal, 2020, 396, 125264.	12.7	18
23	Preparation and Optoelectronic Properties of Cu ₂ ZnSnS ₄ Film. Journal of the Electrochemical Society, 2012, 159, H565-H569.	2.9	17
24	Fabrication and photovoltaic properties of Cu2ZnSnS4/i-a-Si/n-a-Si thin film solar cells. Applied Surface Science, 2013, 280, 138-143.	6.1	17
25	Low-cost chemical fabrication of Cu2ZnSnS4 microparticles and film. Journal of Materials Science: Materials in Electronics, 2013, 24, 1813-1817.	2.2	15
26	Formation of Photoconductive SnS Thin Films through Reaction of Sn-Metal Films in Sulfur-Vapor. ECS Journal of Solid State Science and Technology, 2013, 2, P478-P484.	1.8	15
27	Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 571, 387-397.	9.4	14
28	Preparation and the growth mechanism of zinc blende structure tin sulfide films by successive ionic layer adsorption and reaction. Journal of Crystal Growth, 2010, 312, 3009-3013.	1.5	11
29	The enhanced conductivity of AZO thin films on soda lime glass with an ultrathin Al2O3 buffer layer. Physica B: Condensed Matter, 2010, 405, 3320-3323.	2.7	10
30	Threeâ€Ðimensional GeSe Microstructured Air Brick Photocathode for Advanced Solar Water Splitting. Solar Rrl, 2020, 4, 1900559.	5.8	10
31	Fabrication of an efficient electrodeposited Cu2ZnSnS4-based solar cells with more than 6% conversion efficiency using a sprayed Ga-doped ZnO window layer. RSC Advances, 2014, 4, 24351-24355.	3.6	9
32	Research on the photoresponse current and photosensitive properties of Cu2ZnSnS4 thin film prepared by sulfurization of a sputtered metal precursor. RSC Advances, 2013, 3, 23474.	3.6	8
33	Near-infrared-driven water splitting for hydrogen evolution using a Cu2ZnSnS4-based photocathode by the application of upconversion nanoparticles. Sustainable Energy and Fuels, 2020, 4, 2669-2674.	4.9	8
34	Effect of emitter layer doping concentration on the performance of a silicon thin film heterojunction solar cell. Chinese Physics B, 2013, 22, 016803.	1.4	7
35	Effect of the thickness on the optoelectronic properties of SnS films and photovoltaic performance of SnS/i-a-Si/n-a-Si solar cells. Applied Physics A: Materials Science and Processing, 2014, 117, 2167-2173.	2.3	5
36	A GeSe micro air brick crystal-based film for the sunlight photodegradation of dye-polluted waters. CrystEngComm, 2021, 23, 762-768.	2.6	5

Feng Jiang

#	Article	IF	CITATIONS
37	Polycrystalline silicon films fabricated by rapid thermal annealing. Journal of Materials Science: Materials in Electronics, 2012, 23, 1279-1283.	2.2	3
38	Kesterite Cu2ZnSnS4 thin-film solar water-splitting photovoltaics for solar seawater desalination. Cell Reports Physical Science, 2021, 2, 100468.	5.6	3
39	Threeâ€Dimensional GeSe Microstructured Air Brick Photocathode for Advanced Solar Water Splitting. Solar Rrl, 2020, 4, 2070055.	5.8	1