Milena Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nature Medicine, 2013, 19, 1111-1113.	30.7	350
2	Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15454-15459.	7.1	240
3	MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nature Medicine, 2018, 24, 1696-1700.	30.7	187
4	Mechanisms linking mtDNA damage and aging. Free Radical Biology and Medicine, 2015, 85, 250-258.	2.9	152
5	Striatal Dysfunctions Associated with Mitochondrial DNA Damage in Dopaminergic Neurons in a Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2011, 31, 17649-17658.	3.6	100
6	The Striatum Is Highly Susceptible to Mitochondrial Oxidative Phosphorylation Dysfunctions. Journal of Neuroscience, 2011, 31, 9895-9904.	3.6	99
7	TRAF6 promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson's disease brains. Human Molecular Genetics, 2010, 19, 3759-3770.	2.9	76
8	Mitochondrial genome changes and neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1198-1207.	3.8	64
9	Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2018, 38, 1042-1053.	3.6	58
10	Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) Associates with Huntingtin Protein and Promotes Its Atypical Ubiquitination to Enhance Aggregate Formation. Journal of Biological Chemistry, 2011, 286, 25108-25117.	3.4	57
11	Pioglitazone ameliorates the phenotype of a novel Parkinson's disease mouse model by reducing neuroinflammation. Molecular Neurodegeneration, 2016, 11, 25.	10.8	57
12	Cryptic Amyloidogenic Elements in the 3′ UTRs of Neurofilament Genes Trigger Axonal Neuropathy. American Journal of Human Genetics, 2016, 98, 597-614.	6.2	53
13	Parkinson's Disease DJ-1 L166P Alters rRNA Biogenesis by Exclusion of TTRAP from the Nucleolus and Sequestration into Cytoplasmic Aggregates via TRAF6. PLoS ONE, 2012, 7, e35051.	2.5	51
14	Aggresome-forming TTRAP mediates pro-apoptotic properties of Parkinson's disease-associated DJ-1 missense mutations. Cell Death and Differentiation, 2009, 16, 428-438.	11.2	49
15	Transient systemic mtDNA damage leads to muscle wasting by reducing the satellite cell pool. Human Molecular Genetics, 2013, 22, 3976-3986.	2.9	46
16	Transient mitochondrial DNA double strand breaks in mice cause accelerated aging phenotypes in a ROS-dependent but p53/p21-independent manner. Cell Death and Differentiation, 2017, 24, 288-299.	11.2	43
17	Mitochondrial DNA damage in a mouse model of Alzheimer's disease decreases amyloid beta plaque formation. Neurobiology of Aging, 2013, 34, 2399-2407.	3.1	38
18	The Use of Mitochondria-Targeted Endonucleases to Manipulate mtDNA. Methods in Enzymology, 2014, 547, 373-397.	1.0	37

Milena Pinto

#	Article	IF	CITATIONS
19	Mitochondrial DNA Double-Strand Breaks in Oligodendrocytes Cause Demyelination, Axonal Injury, and CNS Inflammation. Journal of Neuroscience, 2017, 37, 10185-10199.	3.6	34
20	Intravenous administration of mesenchymal stem cells reduces Tau phosphorylation and inflammation in the 3xTg-AD mouse model of Alzheimer's disease. Experimental Neurology, 2021, 341, 113706.	4.1	29
21	Mouse models of Parkinson's disease associated with mitochondrial dysfunction. Molecular and Cellular Neurosciences, 2013, 55, 87-94.	2.2	22
22	Regional susceptibilities to mitochondrial dysfunctions in the CNS. Biological Chemistry, 2012, 393, 275-281.	2.5	17
23	Ablation of Cytochrome c in Adult Forebrain Neurons Impairs Oxidative Phosphorylation Without Detectable Apoptosis. Molecular Neurobiology, 2019, 56, 3722-3735.	4.0	9
24	Metformin delays neurological symptom onset in a mouse model of neuronal complex I deficiency. JCI Insight, 2020, 5, .	5.0	8
25	Treatment with ROS detoxifying gold quantum clusters alleviates the functional decline in a mouse model of Friedreich ataxia. Science Translational Medicine, 2021, 13, .	12.4	7
26	Human Nmnat1 Promotes Autophagic Clearance of Amyloid Plaques in a Drosophila Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 852972.	3.4	7
27	Image-Based Analysis of Mitochondrial Area and Counting from Adult Mouse Dopaminergic Neurites. Bio-protocol, 2018, 8, e2471.	0.4	3
28	Therapy for mitochondrial diseases: An investigation into the potential to stimulate Parkin-mediated mitophagy. Mitochondrion, 2013, 13, 943.	3.4	1
29	MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. , 0, .		1
30	Stem cell therapy in Alzheimer's disease. , 2021, , 97-132.		0
31	Enhanced glycolysis and GSK3 inactivation promote brain metabolic adaptations following neuronal mitochondrial stress. Human Molecular Genetics, 2021, , .	2.9	0