Shimpei Aikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013142/publications.pdf Version: 2024-02-01

SHIMDEL AIKANAA

#	Article	IF	CITATIONS
1	Photoprotection mechanisms under different CO2 regimes during photosynthesis in a green alga Chlorella variabilis. Photosynthesis Research, 2020, 144, 397-407.	1.6	7
2	Phenotypic characterization and comparative genome analysis of two strains of thermophilic, anaerobic, cellulolytic-xylanolytic bacterium Herbivorax saccincola. Enzyme and Microbial Technology, 2020, 136, 109517.	1.6	2
3	Adaptation of light-harvesting functions of unicellular green algae to different light qualities. Photosynthesis Research, 2019, 139, 145-154.	1.6	28
4	Short-Term Temporal Metabolic Behavior in Halophilic Cyanobacterium Synechococcus sp. Strain PCC 7002 after Salt Shock. Metabolites, 2019, 9, 297.	1.3	18
5	Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium. Systematic and Applied Microbiology, 2018, 41, 261-269.	1.2	17
6	Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl2 addition. Biotechnology for Biofuels, 2018, 11, 50.	6.2	21
7	A Stable, Autonomously Replicating Plasmid Vector Containing Pichia pastoris Centromeric DNA. Applied and Environmental Microbiology, 2018, 84, .	1.4	43
8	Deletion of DNA ligase IV homolog confers higher gene targeting efficiency on homologous recombination in Komagataella phaffii. FEMS Yeast Research, 2018, 18, .	1.1	20
9	Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence. Photosynthesis Research, 2017, 133, 317-326.	1.6	2
10	Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II. Photosynthesis Research, 2017, 133, 235-243.	1.6	37
11	Energy Transfer in Cyanobacteria and Red Algae: Confirmation of Spillover in Intact Megacomplexes of Phycobilisome and Both Photosystems. Journal of Physical Chemistry Letters, 2016, 7, 3567-3571.	2.1	33
12	Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Biotechnology Journal, 2015, 10, 886-898.	1.8	38
13	Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy. Photosynthesis Research, 2015, 125, 211-218.	1.6	20
14	Differences in energy transfer of a cyanobacterium, Synechococcus sp. PCC 7002, grown in different cultivation media. Photosynthesis Research, 2015, 125, 201-210.	1.6	2
15	Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence. Photosynthesis Research, 2015, 125, 191-199.	1.6	8
16	A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39. Journal of Applied Phycology, 2015, 27, 2191-2202.	1.5	25
17	Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR. PLoS ONE, 2015, 10, e0128417.	1.1	26
18	Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction. PLoS ONE, 2015, 10, e0144430.	1,1	27

Shimpei Aikawa

#	Article	IF	CITATIONS
19	Overexpression of flv3 improves photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by enhancement of alternative electron flow. Biotechnology for Biofuels, 2014, 7, 493.	6.2	49
20	Rre37 stimulates accumulation of 2â€oxoglutarate and glycogen under nitrogen starvation in <i>Synechocystis</i> sp. PCC 6803. FEBS Letters, 2014, 588, 466-471.	1.3	33
21	Short-term light adaptation of a cyanobacterium, Synechocystis sp. PCC 6803, probed by time-resolved fluorescence spectroscopy. Plant Physiology and Biochemistry, 2014, 81, 149-154.	2.8	13
22	Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnology for Biofuels, 2014, 7, 88.	6.2	85
23	Increased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp. PCC 6803. AMB Express, 2014, 4, 17.	1.4	30
24	Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4. Bioresource Technology, 2014, 152, 247-252.	4.8	82
25	Aqueous size-exclusion chromatographic method for the quantification of cyanobacterial native glycogen. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 930, 90-97.	1.2	20
26	Differences in excitation energy transfer of Arthrospira platensis cells grown in seawater medium and freshwater medium, probed by time-resolved fluorescence spectroscopy. Chemical Physics Letters, 2013, 588, 231-236.	1.2	5
27	Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy and Environmental Science, 2013, 6, 1844.	15.6	103
28	Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy. Photosynthesis Research, 2013, 117, 235-243.	1.6	23
29	Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. Journal of Experimental Botany, 2013, 64, 2943-2954.	2.4	132
30	Utilization of Lactic Acid Bacterial Genes in <i>Synechocystis</i> sp. PCC 6803 in the Production of Lactic Acid. Bioscience, Biotechnology and Biochemistry, 2013, 77, 966-970.	0.6	31
31	Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1483-1489.	0.5	76
32	Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresource Technology, 2012, 108, 211-215.	4.8	114
33	COMPARATIVE STUDY ON THE PHOTOSYNTHETIC PROPERTIES OF <i>PRASIOLA</i> (CHLOROPHYCEAE) AND <i>NOSTOC</i> (CYANOPHYCEAE) FROM ANTARCTIC AND NONâ€ANTARCTIC SITES ¹ . Journal of Phycology, 2010, 46, 466-476.	1.0	41
34	Diel tuning of photosynthetic systems in ice algae at Saroma-ko Lagoon, Hokkaido, Japan. Polar Science, 2009, 3, 57-72.	0.5	5
35	<i>slr1923</i> of <i>Synechocystis</i> sp. PCC6803 Is Essential for Conversion of 3,8-Divinyl(proto)chlorophyll(ide) to 3-Monovinyl(proto)chlorophyll(ide). Plant Physiology, 2008, 148, 1068-1081.	2.3	47