Tom Carlson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2013015/publications.pdf

Version: 2024-02-01

39 papers

1,512 citations

9 h-index 1113639 15 g-index

40 all docs

40 docs citations

40 times ranked

1689 citing authors

#	Article	IF	CITATIONS
1	Assistive Robotic Technologies for Next-Generation Smart Wheelchairs: Codesign and Modularity to Improve Users' Quality of Life. IEEE Robotics and Automation Magazine, 2023, 30, 24-35.	2.2	3
2	From HRI to CRI: Crowd Robot Interaction—Understanding the Effect of Robots on Crowd Motion. International Journal of Social Robotics, 2022, 14, 631-643.	3.1	9
3	Understanding Interactions for Smart Wheelchair Navigation in Crowds. , 2022, , .		8
4	Model-based sensor fusion and filtering for localization of a semi-autonomous robotic vehicle. , 2021, , .		2
5	An â€~Ethical Black Box', Learning From Disagreement in Shared Control Systems. , 2021, , .		O
6	Power Wheelchair Navigation Assistance Using Wearable Vibrotactile Haptics. IEEE Transactions on Haptics, 2020, 13, 52-58.	1.8	30
7	Emulated haptic shared control for brain-computer interfaces improves human-robot cooperation. , 2020, , .		2
8	A hierarchical design for shared-control wheelchair navigation in dynamic environments. , 2020, , .		5
9	A rule-based assistive control algorithm for safe navigation for a powered wheelchair. , 2020, , .		4
10	A Stochastic Control Strategy for Safely Driving a Powered Wheelchair. IFAC-PapersOnLine, 2020, 53, 10148-10153.	0.5	6
11	A shared control solution for safe assisted power wheelchair navigation in an environment consisting of negative obstacles: a proof of concept. , 2019, , .		9
12	Probabilistic Shared Control for a Smart Wheelchair: A Stochastic Model-Based Framework., 2019,,.		6
13	Computer analysis of individual cataract surgery segments in the operating room. Eye, 2019, 33, 313-319.	1.1	8
14	Towards a Wearable Wheelchair Monitor: Classification of Push Style Based on Inertial Sensors at Multiple Upper Limb Locations. , $2018, , .$		3
15	A Topology of Shared Control Systems—Finding Common Ground in Diversity. IEEE Transactions on Human-Machine Systems, 2018, 48, 509-525.	2.5	134
16	VIBROfocus: Design of a focal vibro-tactile robotic-assistive system for spasticity rehabilitation. , 2017, 2017, 783-788.		1
17	Towards Everyday Shared Control of Lower Limb Exoskeletons. Biosystems and Biorobotics, 2017, , 133-135.	0.2	O
18	Probabilistic vs linear blending approaches to shared control for wheelchair driving. , 2017, 2017, 835-840.		25

#	Article	IF	Citations
19	Comparing shared control approaches for alternative interfaces: A wheelchair simulator experiment. , 2017, , .		18
20	MoRe-T2 (mobility research trajectory tracker): validation and application. Journal of Rehabilitation and Assistive Technologies Engineering, 2016, 3, 205566831667055.	0.6	3
21	Muscular activity and physical interaction forces during lower limb exoskeleton use. Healthcare Technology Letters, 2016, 3, 273-279.	1.9	18
22	Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users. , 2016, 2016, 586-589.		37
23	Towards Independence: A BCI Telepresence Robot for People With Severe Motor Disabilities. Proceedings of the IEEE, 2015, 103, 969-982.	16.4	150
24	Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human. , 2015, 2015, 6728-31.		63
25	Introduction to the Special Issue on Shared Control: Applications. Journal of Human-robot Interaction, 2015, 4, 1.	2.0	10
26	Improving Skills and Perception in Robot Navigation by an Augmented Virtuality Assistance System. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 76, 255-266.	2.0	11
27	Design of a robotic wheelchair with a motor imagery based brain-computer interface. , 2013, , .		20
28	Transferring brain–computer interfaces beyond the laboratory: Successful application control for motor-disabled users. Artificial Intelligence in Medicine, 2013, 59, 121-132.	3.8	131
29	Brain-Controlled Wheelchairs: A Robotic Architecture. IEEE Robotics and Automation Magazine, 2013, 20, 65-73.	2.2	337
30	Making the most of context-awareness in brain-computer interfaces. , 2013, , .		6
31	A hybrid BCI for enhanced control of a telepresence robot. , 2013, 2013, 3097-100.		24
32	The birth of the brain-controlled wheelchair. , 2012, , .		20
33	Online modulation of the level of assistance in shared control systems. , 2012, , .		17
34	Collaborative Control for a Robotic Wheelchair: Evaluation of Performance, Attention, and Workload. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42, 876-888.	5.5	194
35	Interaction and evaluation of an augmented virtuality assistance system for teleoperated robots. , 2012, , .		5
36	Brain-controlled telepresence robot by motor-disabled people., 2011, 2011, 4227-30.		85

TOM CARLSON

#	Article	IF	CITATION
37	Evaluation of proportional and discrete shared control paradigms for low resolution user inputs. , 2011, , .		7
38	Increasing robotic wheelchair safety with collaborative control: Evidence from secondary task experiments. , $2010, , .$		30
39	Human-wheelchair collaboration through prediction of intention and adaptive assistance. , 2008, , .		70