
Jonghwa Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2012998/publications.pdf Version: 2024-02-01

IONCHWA DADK

#	Article	IF	CITATIONS
1	Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins. ACS Nano, 2014, 8, 4689-4697.	14.6	726
2	Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Science Advances, 2015, 1, e1500661.	10.3	704
3	Tactile-Direction-Sensitive and Stretchable Electronic Skins Based on Human-Skin-Inspired Interlocked Microstructures. ACS Nano, 2014, 8, 12020-12029.	14.6	516
4	Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range. ACS Nano, 2018, 12, 4045-4054.	14.6	360
5	Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressureâ€Sensitive Electronic Skins. Advanced Functional Materials, 2015, 25, 2841-2849.	14.9	315
6	Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens. ACS Nano, 2017, 11, 4346-4357.	14.6	287
7	Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Advanced Functional Materials, 2020, 30, 1904523.	14.9	247
8	Triboelectric Generators and Sensors for Self-Powered Wearable Electronics. ACS Nano, 2015, 9, 3421-3427.	14.6	239
9	Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Science Advances, 2018, 4, eaas8772.	10.3	155
10	Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins. NPG Asia Materials, 2018, 10, 163-176.	7.9	151
11	Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. Journal of Materials Chemistry B, 2016, 4, 2999-3018.	5.8	116
12	A Hierarchical Nanoparticleâ€inâ€Micropore Architecture for Enhanced Mechanosensitivity and Stretchability in Mechanochromic Electronic Skins. Advanced Materials, 2019, 31, e1808148.	21.0	113
13	Bioinspired Gradient Conductivity and Stiffness for Ultrasensitive Electronic Skins. ACS Nano, 2021, 15, 1795-1804.	14.6	104
14	Ferroelectric Multilayer Nanocomposites with Polarization and Stress Concentration Structures for Enhanced Triboelectric Performances. ACS Nano, 2020, 14, 7101-7110.	14.6	79
15	MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly-sensitive dynamic force sensors. Nano Energy, 2021, 89, 106409.	16.0	66
16	Piezoresistive Tactile Sensor Discriminating Multidirectional Forces. Sensors, 2015, 15, 25463-25473.	3.8	61
17	A Fully Biodegradable Ferroelectric Skin Sensor from Edible Porcine Skin Gelatine. Advanced Science, 2021, 8, 2005010.	11.2	56
18	Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Science Advances, 2022, 8, eabj9220.	10.3	49

Jonghwa Park

#	Article	IF	CITATIONS
19	Molecular structure engineering of dielectric fluorinated polymers for enhanced performances of triboelectric nanogenerators. Nano Energy, 2018, 53, 37-45.	16.0	47
20	Transfer Printing of Electronic Functions on Arbitrary Complex Surfaces. ACS Nano, 2020, 14, 12-20.	14.6	47
21	Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors. ACS Applied Materials & Interfaces, 2015, 7, 26421-26429.	8.0	45
22	Ultrasensitive Multimodal Tactile Sensors with Skinâ€Inspired Microstructures through Localized Ferroelectric Polarization. Advanced Science, 2022, 9, e2105423.	11.2	43
23	Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices. Nano Energy, 2021, 82, 105697.	16.0	41
24	Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes. Journal of Materials Chemistry C, 2015, 3, 2319-2325.	5.5	39
25	InGaAs Nanomembrane/Si van der Waals Heterojunction Photodiodes with Broadband and High Photoresponsivity. ACS Applied Materials & Interfaces, 2016, 8, 26105-26111.	8.0	32
26	A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications. Sensors, 2018, 18, 78.	3.8	30
27	Ultrasensitive Piezoresistive Pressure Sensors Based on Interlocked Micropillar Arrays. BioNanoScience, 2014, 4, 349-355.	3.5	29
28	Binary Spiky/Spherical Nanoparticle Films with Hierarchical Micro/Nanostructures for High-Performance Flexible Pressure Sensors. ACS Applied Materials & Interfaces, 2020, 12, 58403-58411.	8.0	26
29	Ultra-stretchable yet tough, healable, and biodegradable triboelectric devices with microstructured and ionically crosslinked biogel. Nano Energy, 2022, 100, 107438.	16.0	16
30	Users' Cognitive and Affective Response to the Risk to Privacy from a Smart Speaker. International Journal of Human-Computer Interaction, 2021, 37, 759-771.	4.8	14
31	Flexible Pyroresistive Graphene Composites for Artificial Thermosensation Differentiating Materials and Solvent Types. ACS Nano, 2022, 16, 1208-1219.	14.6	11
32	Electronic Skin: Bioinspired Interlocked and Hierarchical Design of ZnO Nanowire Arrays for Static and Dynamic Pressure-Sensitive Electronic Skins (Adv. Funct. Mater. 19/2015). Advanced Functional Materials, 2015, 25, 2840-2840.	14.9	4