
Mark V Khenkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2012661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Encapsulation and Outdoor Testing of Perovskite Solar Cells: Comparing Industrially Relevant Process with a Simplified Lab Procedure. ACS Applied Materials & Interfaces, 2022, 14, 5159-5167.	8.0	43
2	An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nature Energy, 2022, 7, 107-115.	39.5	136
3	Bias-Dependent Dynamics of Degradation and Recovery in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 6562-6573.	5.1	11
4	Biasâ€Dependent Stability of Perovskite Solar Cells Studied Using Natural and Concentrated Sunlight. Solar Rrl, 2020, 4, 1900335.	5.8	17
5	Initial Stages of Photodegradation of MAPbI ₃ Perovskite: Accelerated Aging with Concentrated Sunlight. Solar Rrl, 2020, 4, 1900270.	5.8	17
6	Photoluminescence kinetics for monitoring photoinduced processes in perovskite solar cells. Solar Energy, 2020, 195, 114-120.	6.1	17
7	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	39.5	797
8	Bias-dependent degradation of various solar cells: lessons for stability of perovskite photovoltaics. Energy and Environmental Science, 2019, 12, 550-558.	30.8	84
9	Hybrid organic nanocrystal/carbon nanotube film electrodes for air- and photo-stable perovskite photovoltaics. Nanoscale, 2019, 11, 3733-3740.	5.6	14
10	In-Situ Photoluminescence Kinetics of Lead Halide Perovskites under Sunlight Excitation. , 2019, , .		0
11	Reconsidering figures of merit for performance and stability of perovskite photovoltaics. Energy and Environmental Science, 2018, 11, 739-743.	30.8	79
12	Dynamics of Photoinduced Degradation of Perovskite Photovoltaics: From Reversible to Irreversible Processes. ACS Applied Energy Materials, 2018, 1, 799-806.	5.1	85
13	Unravelling a simple method for the low temperature synthesis of silicon nanocrystals and monolithic nanocrystalline thin films. Scientific Reports, 2017, 7, 40553.	3.3	18
14	Temperature and spectral dependence of CH3NH3PbI3 films photoconductivity. Applied Physics Letters, 2017, 110, .	3.3	15
15	Gaussian approximation of the spectral dependence of the absorption spectrum in polymer semiconductors. Semiconductors, 2016, 50, 482-486.	0.5	5
16	Polarization Sensitive Printing by Ultrafast Laser Nanostructuring in Amorphous Silicon. , 2015, , .		0
17	Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon. Applied Physics Letters, 2015, 106, .	3.3	33

The influence of an air atmosphere on the electrical properties of two-phase films of hydrogenated silicon. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo) Tj ETQq0 0 0 rgBT /Overl**ack** 10 Tf **50** 57 Td (U

Mark V Khenkin

#	Article	IF	CITATIONS
19	Effect of Laser Wavelength on Structure and Photoelectric Properties of <1>a 1 -Si:H Films Crystallized by Femtosecond Laser Pulses. Journal of Nanoelectronics and Optoelectronics, 2015, 9, 728-733.	0.5	1
20	Photoluminescence Features of Hydrogenated Silicon Films with Amorphous/Nanocrystalline Mixed Phase. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 649-652.	0.5	8
21	Post-hydrogenation of amorphous hydrogenated silicon films modified by femtosecond laser irradiation. , 2014, , .		1
22	Effect of hydrogen concentration on structure and photoelectric properties of a-Si:H films modified by femtosecond laser pulses. Canadian Journal of Physics, 2014, 92, 883-887.	1.1	4
23	Femtosecond laser induced crystallization of hydrogenated amorphous silicon for photovoltaic applications. Thin Solid Films, 2014, 556, 410-413.	1.8	22
24	Modification of the structure and hydrogen content of amorphous hydrogenated silicon films under conditions of femtosecond laser-induced crystallization. Technical Physics Letters, 2014, 40, 141-144.	0.7	2
25	Determining the optical absorption edge in organic semiconductor composites with a bulk heterojunction by the constant photocurrent method. Technical Physics Letters, 2014, 40, 735-738.	0.7	1
26	Features of the structure and defect states in hydrogenated polymorphous silicon films. JETP Letters, 2013, 97, 466-469.	1.4	8
27	Influence of the fabrication conditions of polymorphous silicon films on their structural, electrical and optical properties. Semiconductors, 2013, 47, 1271-1274.	0.5	4
28	Visible luminescence from hydrogenated amorphous silicon modified by femtosecond laser radiation. Applied Physics Letters, 2012, 101, 081902.	3.3	24
29	Structural and electrophysical properties of femtosecond laser exposed hydrogenated amorphous silicon films. , 2012, , .		7
30	Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties. Semiconductors, 2012, 46, 749-754.	0.5	25
31	Specific features of photoelectric and optical properties of amorphous hydrogenated silicon films produced by plasmochemical deposition from monosilane–hydrogen mixture. Semiconductors, 2011, 45, 510-514.	0.5	4
32	Initial Stages of Phoodegradation of MAPBI3 Perovskite: Accelerated Study by Concentrated Sunlight. , 0, , .		0
33	Bias-Dependent Stability of Perovskite Solar Cells: Degradation Mechanisms Reconsidered. , 0, , .		Ο