Donald W Schaffner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2012198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantification and Variability Analysis of Bacterial Cross-Contamination Rates in Common Food Service Tasks. Journal of Food Protection, 2001, 64, 72-80.	0.8	265
2	Glove Barriers to Bacterial Cross-Contamination between Hands to Food. Journal of Food Protection, 2001, 64, 845-849.	0.8	145
3	Quantitative Assessment of the Microbial Risk of Leafy Greens from Farm to Consumption: Preliminary Framework, Data, and Risk Estimates. Journal of Food Protection, 2011, 74, 700-708.	0.8	110
4	Modeling the growth rate and lag time of different strains of Salmonella enterica and Listeria monocytogenes in ready-to-eat lettuce. Food Microbiology, 2012, 30, 267-273.	2.1	104
5	Modeling the Effect of Temperature on the Growth Rate and Lag Time of Listeria innocua and Listeria monocytogenes. Journal of Food Protection, 1993, 56, 205-210.	0.8	92
6	Risk assessment of hand washing efficacy using literature and experimental data. International Journal of Food Microbiology, 2002, 73, 305-313.	2.1	89
7	Selection of indigenous lactic acid bacteria presenting anti-listerial activity, and their role in reducing the maturation period and assuring the safety of traditional Brazilian cheeses. Food Microbiology, 2018, 73, 288-297.	2.1	68
8	Quantitative Microbial Risk Assessment for Escherichia coli O157:H7 in Fresh-Cut Lettuce. Journal of Food Protection, 2017, 80, 302-311.	0.8	63
9	Analysis and Modeling of the Variability Associated with UV Inactivation of Escherichia coli in Apple Cider. Journal of Food Protection, 2000, 63, 1587-1590.	0.8	62
10	Risk of salmonellosis from consumption of almonds in the North American market. Food Research International, 2012, 45, 1166-1174.	2.9	62
11	Modeling the growth of Listeria monocytogenes on cut cantaloupe, honeydew and watermelon. Food Microbiology, 2014, 38, 52-55.	2.1	60
12	Predicting Survival of Salmonella in Low–Water Activity Foods: An Analysis of Literature Data. Journal of Food Protection, 2014, 77, 1448-1461.	0.8	56
13	Cross contamination of Escherichia coli O157:H7 between lettuce and wash water during home-scale washing. Food Microbiology, 2015, 46, 428-433.	2.1	56
14	Microbiology of organic and conventionally grown fresh produce. Brazilian Journal of Microbiology, 2016, 47, 99-105.	0.8	56
15	Quantifying Transfer Rates of Salmonella and Escherichia coli O157:H7 between Fresh-Cut Produce and Common Kitchen Surfaces. Journal of Food Protection, 2013, 76, 1530-1538.	0.8	55
16	Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions. International Journal of Food Microbiology, 2007, 120, 287-295.	2.1	52
17	Monte Carlo Simulations Assessing the Risk of Salmonellosis from Consumption of Almonds. Journal of Food Protection, 2006, 69, 1594-1599.	0.8	51
18	Risk of infection with Salmonella and Listeria monocytogenes due to consumption of ready-to-eat leafy vegetables in Brazil. Food Control, 2014, 42, 1-8.	2.8	51

#	Article	IF	CITATIONS
19	Characterization of Microbial Inactivation Using Plasma-Activated Water and Plasma-Activated Acidified Buffer. Journal of Food Protection, 2018, 81, 1472-1480.	0.8	51
20	Modeling the Inactivation of Viruses from the <i>Coronaviridae</i> Family in Response to Temperature and Relative Humidity in Suspensions or on Surfaces. Applied and Environmental Microbiology, 2020, 86, .	1.4	51
21	Virus risk in the food supply chain. Current Opinion in Food Science, 2019, 30, 43-48.	4.1	50
22	Norovirus cross-contamination during preparation of fresh produce. International Journal of Food Microbiology, 2015, 198, 43-49.	2.1	49
23	Longer Contact Times Increase Cross-Contamination of Enterobacter aerogenes from Surfaces to Food. Applied and Environmental Microbiology, 2016, 82, 6490-6496.	1.4	44
24	Fate of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella on fresh-cut celery. Food Microbiology, 2013, 34, 151-157.	2.1	43
25	Growth and Survival of Listeria monocytogenes on Intact Fruit and Vegetable Surfaces During Postharvest Handling: A Systematic Literature Review. Journal of Food Protection, 2020, 83, 108-128.	0.8	43
26	Quantitative assessment of the impact of cross-contamination during the washing step of ready-to-eat leafy greens on the risk of illness caused by Salmonella. Food Research International, 2017, 92, 106-112.	2.9	40
27	Quantifying the Effect of Hand Wash Duration, Soap Use, Ground Beef Debris, and Drying Methods on the Removal of Enterobacter aerogenes on Hands. Journal of Food Protection, 2015, 78, 685-690.	0.8	39
28	Development of growth and survival models for Salmonella and Listeria monocytogenes during non-isothermal time-temperature profiles in leafy greens. Food Control, 2017, 71, 32-41.	2.8	37
29	A Meta-Analysis of the Published Literature on the Effectiveness of Antimicrobial Soaps. Journal of Food Protection, 2011, 74, 1875-1882.	0.8	36
30	Modeling the inactivation kinetics of Bacillus coagulans spores in tomato pulp from the combined effect of high pressure and moderate temperature. LWT - Food Science and Technology, 2013, 53, 107-112.	2.5	34
31	Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry. Journal of Food Protection, 2016, 79, 246-252.	0.8	33
32	Modeling the Germination Kinetics of Clostridium botulinum 56A Spores as Affected by Temperature, pH, and Sodium Chloride. Journal of Food Protection, 2000, 63, 1071-1079.	0.8	29
33	Changes in thermo-tolerance and survival under simulated gastrointestinal conditions of Salmonella Enteritidis PT4 and Salmonella Typhimurium PT4 in chicken breast meat after exposure to sequential stresses. International Journal of Food Microbiology, 2017, 251, 15-23.	2.1	28
34	The Modular Process Risk Model (MPRM): a Structured Approach to Food Chain Exposure Assessment. , O, , 99-136.		26
35	Time-to-detection, percent-growth-positive and maximum growth rate models for Clostridium botulinum 56A at multiple temperatures. International Journal of Food Microbiology, 2002, 77, 187-197.	2.1	25
36	Effect of the competitive growth of Lactobacillus sakei MN on the growth kinetics of Listeria monocytogenes Scott A in model meat gravy. Food Control, 2016, 63, 34-45.	2.8	25

#	Article	IF	CITATIONS
37	Quantifying Bacterial Cross-Contamination Rates between Fresh-Cut Produce and Hands. Journal of Food Protection, 2017, 80, 213-219.	0.8	25
38	A comparison of dynamic tertiary and competition models for describing the fate of Listeria monocytogenes in Minas fresh cheese during refrigerated storage. Food Microbiology, 2019, 79, 48-60.	2.1	25
39	Development of a Model To Predict Growth of Clostridium perfringens in Cooked Beef during Cooling. Journal of Food Protection, 2005, 68, 336-341.	0.8	23
40	Risk assessment of Salmonella in Danish meatballs produced in the catering sector. International Journal of Food Microbiology, 2015, 196, 109-125.	2.1	23
41	Monte Carlo simulation of the risk of contamination of apples with Escherichia coli O157:H7. International Journal of Food Microbiology, 2002, 78, 245-255.	2.1	22
42	Inactivation of <i>Vibrio parahaemolyticus</i> in Hard Clams (<i>Mercanaria mercanaria</i>) by High Hydrostatic Pressure (HHP) and the Effect of HHP on the Physical Characteristics of Hard Clam Meat. Journal of Food Science, 2013, 78, E251-7.	1.5	21
43	Management of Risk of Microbial Cross-Contamination from Uncooked Frozen Hamburgers by Alcohol-Based Hand Sanitizer. Journal of Food Protection, 2007, 70, 109-113.	0.8	20
44	Modeling the Growth of Salmonella in Raw Poultry Stored under Aerobic Conditions. Journal of Food Protection, 2008, 71, 2429-2435.	0.8	20
45	Efficacy of a Commercial Produce Wash on Bacterial Contamination of Lettuce in a Food Service Setting. Journal of Food Protection, 2003, 66, 2359-2361.	0.8	19
46	Quantifying the Effects of Water Temperature, Soap Volume, Lather Time, and Antimicrobial Soap as Variables in the Removal of Escherichia coli ATCC 11229 from Hands. Journal of Food Protection, 2017, 80, 1022-1031.	0.8	19
47	Effect of Surface Roughness in Model and Fresh Fruit Systems on Microbial Inactivation Efficacy of Cold Atmospheric Pressure Plasma. Journal of Food Protection, 2017, 80, 1337-1346.	0.8	19
48	Behavior of Listeria monocytogenes in the presence or not of intentionally-added lactic acid bacteria during ripening of artisanal Minas semi-hard cheese. Food Microbiology, 2020, 91, 103545.	2.1	19
49	Tracking and modeling norovirus transmission during mechanical slicing of globe tomatoes. International Journal of Food Microbiology, 2014, 180, 13-18.	2.1	18
50	Estimating microbial growth parameters from non-isothermal data: A case study with Clostridium perfringens. International Journal of Food Microbiology, 2007, 118, 294-303.	2.1	17
51	Modeling the risk of salmonellosis from consumption of pistachios produced and consumed in the United States. Food Microbiology, 2017, 67, 85-96.	2.1	17
52	Analysis of the Influence of Environmental Parameters on <i>Clostridium botulinum</i> Time-to-Toxicity by Using Three Modeling Approaches. Applied and Environmental Microbiology, 1998, 64, 4416-4422.	1.4	16
53	Effect of High Hydrostatic Pressure and Pressure Cycling on a Pathogenic Salmonella enterica Serovar Cocktail Inoculated into Creamy Peanut Butter. Journal of Food Protection, 2012, 75, 169-173.	0.8	16
54	<i>In Vitro</i> Control of <i><scp>E</scp>nterococcus faecalis</i> by <i><scp>Z</scp>ataria multilfolira <scp>B</scp>oiss</i> , <i><scp>O</scp>riganum vulgare <scp>L</scp></i> and <i><scp>M</scp>entha pulegium</i> Essential Oils. Journal of Food Safety, 2013, 33, 327-332.	1.1	16

#	Article	IF	CITATIONS
55	A System Model for Understanding the Role of Animal Feces as a Route of Contamination of Leafy Greens before Harvest. Applied and Environmental Microbiology, 2017, 83, .	1.4	15
56	Farm to fork quantitative microbial risk assessment for norovirus on frozen strawberries. Microbial Risk Analysis, 2018, 10, 44-53.	1.3	15
57	Higher Concentrations of Bacterial Enveloped Virus Phi6 Can Protect the Virus from Environmental Decay. Applied and Environmental Microbiology, 2021, 87, e0137121.	1.4	15
58	Cost, quality, and safety: A nonlinear programming approach to optimize the temperature during supply chain of leafy greens. LWT - Food Science and Technology, 2016, 73, 412-418.	2.5	14
59	Quantification of Salmonella enterica transfer between tomatoes, soil, and plastic mulch. International Journal of Food Microbiology, 2020, 316, 108480.	2.1	14
60	Quantifying the Influence of Relative Humidity, Temperature, and Diluent on the Survival and Growth of Enterobacter aerogenes. Journal of Food Protection, 2019, 82, 2135-2147.	0.8	13
61	Quantitative Data Analysis To Determine Best Food Cooling Practices in U.S. Restaurants. Journal of Food Protection, 2015, 78, 778-783.	0.8	12
62	Mycotoxins in artisanal beers: An overview of relevant aspects of the raw material, manufacturing steps and regulatory issues involved. Food Research International, 2021, 141, 110114.	2.9	12
63	Models for factors influencing pathogen survival in low water activity foods from literature data are highly significant but show large unexplained variance. Food Microbiology, 2021, 98, 103783.	2.1	12
64	Issues To Consider When Setting Intervention Targets with Limited Data for Low-Moisture Food Commodities: A Peanut Case Study. Journal of Food Protection, 2013, 76, 360-369.	0.8	11
65	Quantitative Microbial Risk Assessment of Antibacterial Hand Hygiene Products on Risk of Shigellosis. Journal of Food Protection, 2014, 77, 574-582.	0.8	11
66	Predicting and Modelling the Growth of Potentially Pathogenic Bacteria in Coalho Cheese. Journal of Food Protection, 2017, 80, 1172-1181.	0.8	11
67	Bayesian modeling of two- and three-species bacterial competition in milk. Food Research International, 2018, 105, 952-961.	2.9	11
68	Modeling the Risk of Salmonellosis from Consumption of Peanuts in the United States. Journal of Food Protection, 2019, 82, 579-588.	0.8	11
69	Microbial Inactivation by Non-equilibrium Short-Pulsed Atmospheric Pressure Dielectric Barrier Discharge (Cold Plasma): Numerical and Experimental Studies. Food Engineering Reviews, 2021, 13, 136-147.	3.1	11
70	Modification of a Predictive Model To Include the Influence of Fat Content on Salmonella Inactivation in Low-Water-Activity Foods. Journal of Food Protection, 2020, 83, 801-815.	0.8	11
71	A worldwide systematic review, metaâ€analysis, and health risk assessment study of mycotoxins in beers. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5742-5764.	5.9	11

#	Article	IF	CITATIONS
73	Modeling aflatoxin B1 production by Aspergillus flavus during wheat malting for craft beer as a function of grains steeping degree, temperature and time of germination. International Journal of Food Microbiology, 2020, 333, 108777.	2.1	10
74	Quantification of Survival and Transfer of Salmonella on Fresh Cucumbers during Waxing. Journal of Food Protection, 2021, 84, 456-462.	0.8	10
75	Survival or Growth of Inoculated Escherichia coli O157:H7 and Salmonella on Yellow Onions (Allium) Tj ETQq1 1 Protection, 2015, 78, 42-50.	0.784314 0.8	rgBT /Overlo 9
76	<i>In situ</i> studies of microbial inactivation during high pressure processing. High Pressure Research, 2016, 36, 79-89.	0.4	9
77	Prediction of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes Growth in Leafy Greens without Temperature Control. Journal of Food Protection, 2017, 80, 68-73.	0.8	9
78	Changes of Antibiotic Resistance Phenotype in Outbreak-Linked Salmonella enterica Strains after Exposure to Human Simulated Gastrointestinal Conditions in Chicken Meat. Journal of Food Protection, 2018, 81, 1844-1850.	0.8	9
79	Prediction of Most Probable Number of Listeria monocytogenes Using a Generalized Linear Model and a Modified FDA Listeria Isolation Method. Journal of Food Protection, 1994, 57, 1052-1056.	0.8	8
80	Comparative effect of different test methodologies on <i><scp>B</scp>acillus coagulans</i> spores inactivation kinetics in tomato pulp under isothermal conditions. International Journal of Food Science and Technology, 2013, 48, 1722-1728.	1.3	8
81	Quantification of Transfer of Salmonella from Citrus Fruits to Peel, Edible Portion, and Gloved Hands during Hand Peeling. Journal of Food Protection, 2017, 80, 933-939.	0.8	8
82	Modeling the survival of Salmonella on whole cucumbers as a function of temperature and relative humidity. Food Microbiology, 2021, 100, 103840.	2.1	8
83	ComBase Models Are Valid for Predicting Fate of Listeria monocytogenes on 10 Whole Intact Raw Fruits and Vegetables. Journal of Food Protection, 2021, 84, 597-610.	0.8	8
84	An expert panel report of a proposed scientific model demonstrating the effectiveness of antibacterial handwash products. American Journal of Infection Control, 2012, 40, 742-749.	1.1	7
85	Effect of High Hydrostatic Pressure on Salmonella Inoculated into Creamy Peanut Butter with Modified Composition. Journal of Food Protection, 2014, 77, 1664-1668.	0.8	7
86	Influence of Soap Characteristics and Food Service Facility Type on the Degree of Bacterial Contamination of Open, Refillable Bulk Soaps. Journal of Food Protection, 2018, 81, 218-225.	0.8	7
87	A predictive growth model for Clostridium botulinum during cooling of cooked uncured ground beef. Food Microbiology, 2021, 93, 103618.	2.1	7
88	Bootstrap parametric GB2 and bootstrap nonparametric distributions for studying shiga toxin-producing Escherichia coli strains growth rate variability. Food Research International, 2019, 120, 829-838.	2.9	6
89	Germination, Growth, and Toxin Production of Nonproteolytic Clostridium botulinum as Affected by Multiple Barriers. Journal of Food Science, 2001, 66, 575-579.	1.5	5
90	Utilization of Mathematical Models To Manage Risk of Holding Cold Food without Temperature Control. Journal of Food Protection, 2013, 76, 1085-1094.	0.8	5

#	Article	IF	CITATIONS
91	Intrinsic Parameters and Bacterial Growth Prediction in a Brazilian Minimally Ripened Cheese (Coalho) during Refrigerated Storage. Journal of Food Protection, 2018, 81, 1800-1809.	0.8	5
92	Evaluating the Risk of Salmonellosis from Dry Roasted Sunflower Seeds. Journal of Food Protection, 2020, 83, 17-27.	0.8	5
93	Modelling Growth and Decline in a Two-Species Model System: Pathogenic Escherichia coli O157:H7 and Psychrotrophic Spoilage Bacteria in Milk. Foods, 2020, 9, 331.	1.9	5
94	Communicating about Microbial Risks in Foods. , 0, , 205-262.		5
95	Using Risk Analysis for Microbial Food Safety Regulatory Decision Making. , 0, , 137-175.		5
96	Scientific Evidence Supports the Use of Alcohol-Based Hand Sanitizers as an Effective Alternative to Hand Washing in Retail Food and Food Service Settings When Heavy Soiling Is Not Present on Hands. Journal of Food Protection, 2021, 84, 781-801.	0.8	5
97	Validation of Mathematical Models for Salmonella Growth in Raw Ground Beef under Dynamic Temperature Conditions Representing Loss of Refrigeration. Journal of Food Protection, 2014, 77, 1110-1115.	0.8	4
98	Modeling Salmonella enterica fate in fresh-cut pepper (Capsicum annuum L.) during storage as a function of temperature and relative humidity. LWT - Food Science and Technology, 2020, 133, 109849.	2.5	4
99	Wet versus Dry Inoculation Methods Have a Significant Effect of Listeria monocytogenes Growth on Many Types of Whole Intact Fresh Produce. Journal of Food Protection, 2021, 84, 1793-1800.	0.8	4
100	Using Risk Assessment Principles in an Emerging Paradigm for Controlling the Microbial Safety of Foods. , 0, , 29-50.		4
101	Microbial Ecology in Food Safety Risk Assessment. , 0, , 51-97.		4
102	Evaluation of glove type on survival and transfer of <i>Escherichia coli</i> in model systems and during hand harvesting of lettuce. JSFA Reports, 2021, 1, 17-25.	0.2	4
103	Quantitative risk assessment of microbial sampling effectiveness. Clinical Microbiology Newsletter, 2002, 24, 44-47.	0.4	3
104	Expansion and Validation of a Predictive Model for the Growth of Bacillus Stearothermophilus in Military Rations. Journal of Food Science, 2002, 67, 1872-1878.	1.5	3
105	Predictive model for growth of Clostridium botulinum from spores during cooling of cooked ground chicken. Food Research International, 2021, 149, 110695.	2.9	3
106	Successive exposure to Mentha piperita L. essential oil affects the culturability and induces membrane repair in a persister epidemic Salmonella Typhimurium PT4. Microbial Pathogenesis, 2020, 149, 104264.	1.3	3
107	Modeling the Growth of <i><scp>E</scp>scherichia coli</i> under the Effects of <i><scp>C</scp>arum copticum</i> Essential Oil, <scp>pH</scp> , Temperature and <scp>NaCl</scp> Using Response Surface Methodology. Journal of Food Safety, 2012, 32, 415-425.	1.1	2
108	Integrating Concepts: a Case Study Using Enterobacter sakazakii in Infant Formula. , 2014, , 177-204.		2

#	Article	IF	CITATIONS
109	Botulinum Neurotoxin Subtype A4 Originating from Nontoxigenic Clostridium botulinum. Applied and Environmental Microbiology, 2014, 80, 7131-7132.	1.4	2
110	Effect of temperature abuse on frozen army rations. Food Research International, 2015, 76, 587-594.	2.9	2
111	Preface. Food Microbiology, 2015, 45, 159.	2.1	2
112	Transfer of MS2 bacteriophage from surfaces to raspberry and pitanga fruits and virus survival in response to sanitization, frozen storage and preservation technologies Food Microbiology, 2022, 104, 103995.	2.1	2
113	Predictive model for growth of Clostridium botulinum from spores at temperatures applicable to cooling of cooked ground pork. Innovative Food Science and Emerging Technologies, 2022, 77, 102960.	2.7	2
114	Modeling the Growth of Salmonella on Sliced Cucumbers as a Function of Temperature and Relative Humidity. Journal of Food Protection, 2022, 85, 1122-1127.	0.8	2
115	Modeling inactivation kinetics for Enterococcus faecium on the surface of peanuts during convective dry roasting. Food Research International, 2021, 150, 110766.	2.9	1
116	Initial and Final Cell Concentrations Significantly Influence the Maximum Growth Rate of Listeria monocytogenes in Published Literature Data for Whole Intact Fresh Produce. Journal of Food Protection, 2022, 85, 987-992.	0.8	1
117	Prediction of the Growth Behavior of <scp><i>A</i></scp> <i>eromonas hydrophila</i> Using a Novel Modeling Approach: Support Vector Machine. Journal of Food Safety, 2014, 34, 292-299.	1.1	0
118	Validation of a Simple Two-Point Method To Assess Restaurant Compliance with Food Code Cooling Rates. Journal of Food Protection, 2021, 84, 6-13.	0.8	0
119	Evaluating the Behavior of Staphylococcus aureus and Bacillus cereus in Dairy- and Non-Dairy–Based Aqueous Slurries during Manufacturing of Table Spreads. Journal of Food Protection, 2020, 83, 1801-1811.	0.8	0
120	Survival kinetics, membrane integrity and metabolic activity of Salmonella enterica in conventionally and osmotically dehydrated coconut flakes. International Journal of Food Microbiology, 2022, 370, 109669.	2.1	0
121	Draft Genome Sequence for Klebsiella michiganensis B199A, Originally Identified as Enterobacter aerogenes. Microbiology Resource Announcements, 2022, , e0031022.	0.3	0