List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2011880/publications.pdf Version: 2024-02-01

		66234	85405
129	5,798	42	71
papers	5,798 citations	h-index	g-index
132	132	132	5143
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Functional defect of regulatory CD4+CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood, 2005, 105, 735-741.	0.6	369
2	Myasthenia gravis: A comprehensive review of immune dysregulation and etiological mechanisms. Journal of Autoimmunity, 2014, 52, 90-100.	3.0	279
3	Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Annals of Neurology, 2005, 57, 444-448.	2.8	216
4	Diagnostic and clinical classification of autoimmune myasthenia gravis. Journal of Autoimmunity, 2014, 48-49, 143-148.	3.0	204
5	Human thymus contains IFN-α–producing CD11c–, myeloid CD11c+, and mature interdigitating dendritic cells. Journal of Clinical Investigation, 2001, 107, 835-844.	3.9	172
6	Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. Journal of Clinical Investigation, 2016, 126, 1525-1537.	3.9	153
7	Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmunity Reviews, 2011, 10, 410-415.	2.5	148
8	The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood, 2006, 108, 432-440.	0.6	143
9	Phenotypic and Immunohistological Analyses of the Human Adult Thymus: Evidence for an Active Thymus during Adult Life. Cellular Immunology, 1997, 179, 30-40.	1.4	130
10	Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: Roles of IL-17 and TNF-α. Journal of Autoimmunity, 2014, 52, 53-63.	3.0	118
11	Myasthenia Gravis Thymus. American Journal of Pathology, 2007, 171, 893-905.	1.9	113
12	Epsteinâ€Barr virus persistence and reactivation in myasthenia gravis thymus. Annals of Neurology, 2010, 67, 726-738.	2.8	103
13	Myasthenia Gravis: Paradox versus paradigm in autoimmunity. Journal of Autoimmunity, 2014, 52, 1-28.	3.0	102
14	A Specific Interferon (IFN)-stimulated Response Element of the Distal HLA-G Promoter Binds IFN-regulatory Factor 1 and Mediates Enhancement of This Nonclassical Class I Gene by IFN-β. Journal of Biological Chemistry, 2001, 276, 6133-6139.	1.6	99
15	Genetic basis of myasthenia gravis – A comprehensive review. Journal of Autoimmunity, 2014, 52, 146-153.	3.0	98
16	Effects of Cytokines on Acetylcholine Receptor Expression: Implications for Myasthenia Gravis. Journal of Immunology, 2005, 174, 5941-5949.	0.4	92
17	Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmunity Reviews, 2013, 12, 885-893.	2.5	84
18	In vivo and in vitro apoptosis of human thymocytes are associated with nitrotyrosine formation. Blood, 2001, 97, 3521-3530.	0.6	78

#	Article	IF	CITATIONS
19	Overexpression of IFN-Induced Protein 10 and Its Receptor CXCR3 in Myasthenia Gravis. Journal of Immunology, 2005, 174, 5324-5331.	0.4	76
20	Etiology of myasthenia gravis: Innate immunity signature in pathological thymus. Autoimmunity Reviews, 2013, 12, 863-874.	2.5	75
21	Implication of doubleâ€stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Annals of Neurology, 2013, 73, 281-293.	2.8	73
22	Modulation of HLA-G expression in human thymic and amniotic epithelial cells. Human Immunology, 2000, 61, 1095-1101.	1.2	71
23	Thymus involvement in earlyâ€onset myasthenia gravis. Annals of the New York Academy of Sciences, 2018, 1412, 137-145.	1.8	71
24	Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review. Clinical Reviews in Allergy and Immunology, 2017, 52, 108-124.	2.9	70
25	Differential Estrogen Receptor Expression in Autoimmune Myasthenia Gravis. Endocrinology, 2005, 146, 2345-2353.	1.4	69
26	IL-6 and Akt are involved in muscular pathogenesis in myasthenia gravis. Acta Neuropathologica Communications, 2015, 3, 1.	2.4	69
27	Microarrays Reveal Distinct Gene Signatures in the Thymus of Seropositive and Seronegative Myasthenia Gravis Patients and the Role of CC Chemokine Ligand 21 in Thymic Hyperplasia. Journal of Immunology, 2006, 177, 7868-7879.	0.4	67
28	A Pure Population of Ectodermal Cells Derived from Human Embryonic Stem Cells. Stem Cells, 2008, 26, 440-444.	1.4	66
29	CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Annals of Neurology, 2009, 66, 521-531.	2.8	64
30	Central role of interferon-beta in thymic events leading to myasthenia gravis. Journal of Autoimmunity, 2014, 52, 44-52.	3.0	63
31	Thymic remodeling associated with hyperplasia in myasthenia gravis. Autoimmunity, 2010, 43, 401-412.	1.2	62
32	Circulating mi <scp>RNA</scp> s in myasthenia gravis: miRâ€150â€5p as a new potential biomarker. Annals of Clinical and Translational Neurology, 2014, 1, 49-58.	1.7	62
33	SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology, 2013, 218, 373-381.	0.8	57
34	Integrative analysis of methylome and transcriptome in human blood identifies extensive sex- and immune cell-specific differentially methylated regions. Epigenetics, 2015, 10, 943-957.	1.3	57
35	The thymus in myasthenia gravis: Site of "innate autoimmunity�. Muscle and Nerve, 2011, 44, 467-484.	1.0	56
36	<i>Regulatory and Pathogenic Mechanisms in Human Autoimmune Myasthenia Gravis</i> . Annals of the New York Academy of Sciences, 2008, 1132, 135-142.	1.8	49

#	Article	IF	CITATIONS
37	Potential Role of NKG2D/MHC Class I-Related Chain A Interaction in Intrathymic Maturation of Single-Positive CD8 T Cells. Journal of Immunology, 2003, 171, 1909-1917.	0.4	48
38	Thymocyte Fas Expression Is Dysregulated in Myasthenia Gravis Patients With Anti-Acetylcholine Receptor Antibody. Blood, 1997, 89, 3287-3295.	0.6	46
39	Impairment of regulatory T cells in myasthenia gravis: Studies in an experimental model. Autoimmunity Reviews, 2013, 12, 894-903.	2.5	46
40	Establishment of a Human Thymic Myoid Cell Line. American Journal of Pathology, 1999, 155, 1229-1240.	1.9	45
41	Thymic myoid cells express high levels of muscle genes. Journal of Neuroimmunology, 2004, 148, 97-105.	1.1	45
42	Normal human immunoglobulin suppresses experimental myasthenia gravis in SCID mice. European Journal of Immunology, 1999, 29, 2436-2442.	1.6	44
43	Ectopic GC in the thymus of myasthenia gravis patients show characteristics of normal GC. European Journal of Immunology, 2010, 40, 1150-1161.	1.6	43
44	Autoimmune myasthenia gravis. Current Opinion in Neurology, 2013, 26, 569-576.	1.8	42
45	Major pathogenic effects of anti-MuSK antibodies in Myasthenia Gravis. Journal of Neuroimmunology, 2006, 177, 119-131.	1.1	41
46	Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor. Journal of Autoimmunity, 2014, 52, 101-112.	3.0	41
47	Synergistic induction of interleukin-6 production and gene expression in human thymic epithelial cells by LPS and cytokines. Cellular Immunology, 1991, 138, 79-93.	1.4	39
48	Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes. Journal of Cell Science, 2012, 125, 4640-50.	1.2	39
49	Balance between Estrogens and Proinflammatory Cytokines Regulates Chemokine Production Involved in Thymic Germinal Center Formation. Scientific Reports, 2017, 7, 7970.	1.6	39
50	An imbalance between regulatory T cells and T helper 17 cells in acetylcholine receptor–positive myasthenia gravis patients. Annals of the New York Academy of Sciences, 2018, 1413, 154-162.	1.8	39
51	Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmunity Reviews, 2020, 19, 102468.	2.5	39
52	Anti-acetylcholine receptor antibodies in neonatal myasthenia gravis: Heterogeneity and pathogenic significance. Journal of Autoimmunity, 1991, 4, 185-195.	3.0	38
53	Altered intrathymic T-cell repertoire in human myasthenia gravis. Annals of Neurology, 1997, 41, 731-741.	2.8	38
54	Fas/APO-1/CD95 in health and autoimmune disease: thymic and peripheral aspects. Seminars in Immunology, 1998, 10, 449-456.	2.7	38

#	Article	IF	CITATIONS
55	The susceptibility of Aireâ^'/â^' mice to experimental myasthenia gravis involves alterations in regulatory T cells. Journal of Autoimmunity, 2011, 36, 16-24.	3.0	38
56	T cells from autoimmune patients display reduced sensitivity to immunoregulation by mesenchymal stem cells: Role of IL-2. Autoimmunity Reviews, 2014, 13, 187-196.	2.5	37
57	Thymoma-associated myasthenia gravis: On the search for a pathogen signature. Journal of Autoimmunity, 2014, 52, 29-35.	3.0	37
58	Prevention of autoimmune attack by targeting specific T-cell receptors in a severe combined immunodeficiency mouse model of myasthenia gravis. Annals of Neurology, 1999, 46, 559-567.	2.8	36
59	Mature Human Thymocytes Migrate on Laminin-5 with Activation of Metalloproteinase-14 and Cleavage of CD44. Journal of Immunology, 2004, 172, 1397-1406.	0.4	35
60	The thymic theme of acetylcholinesterase splice variants in myasthenia gravis. Blood, 2007, 109, 4383-4391.	0.6	35
61	Il-23/Th17 cell pathway: A promising target to alleviate thymic inflammation maintenance in myasthenia gravis. Journal of Autoimmunity, 2019, 98, 59-73.	3.0	35
62	Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis. Oncotarget, 2016, 7, 7550-7562.	0.8	34
63	Risk factors associated with myasthenia gravis in thymoma patients: The potential role of thymic germinal centers. Journal of Autoimmunity, 2020, 106, 102337.	3.0	34
64	Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization. Experimental Neurology, 2015, 270, 11-17.	2.0	33
65	Evidence of enhanced recombinant interleukin-2 sensitivity in thymic lymphocytes from patients with myasthenia gravis: possible role in autoimmune pathogenesis. Journal of Neuroimmunology, 1989, 24, 75-85.	1.1	31
66	Defects of immunoregulatory mechanisms in myasthenia gravis: role of ILâ€17. Annals of the New York Academy of Sciences, 2012, 1274, 40-47.	1.8	27
67	<scp>VAV</scp> 1 and <scp>BAFF</scp> , via <scp>NF</scp> κB pathway, are genetic risk factors for myasthenia gravis. Annals of Clinical and Translational Neurology, 2014, 1, 329-339.	1.7	27
68	Autoimmune Thyroiditis and Myasthenia Gravis. Frontiers in Endocrinology, 2017, 8, 169.	1.5	27
69	Review on Toll-Like Receptor Activation in Myasthenia Gravis: Application to the Development of New Experimental Models. Clinical Reviews in Allergy and Immunology, 2017, 52, 133-147.	2.9	26
70	Thymus and Myasthenia Gravis: What can we learn from DNA microarrays?. Journal of Neuroimmunology, 2008, 201-202, 57-63.	1.1	25
71	Inflammation and Epstein-Barr Virus Infection Are Common Features of Myasthenia Gravis Thymus: Possible Roles in Pathogenesis. Autoimmune Diseases, 2011, 2011, 1-17.	2.7	25
72	Analysis of microRNA expression in the thymus of Myasthenia Gravis patients opens new research avenues. Autoimmunity Reviews, 2018, 17, 588-600.	2.5	25

#	Article	IF	CITATIONS
73	T-cell antigenic sites involved in Myasthenia Gravis: Correlations with antibody titre and disease severity. Journal of Autoimmunity, 1991, 4, 137-153.	3.0	24
74	Causes and Consequences of miR-150-5p Dysregulation in Myasthenia Gravis. Frontiers in Immunology, 2019, 10, 539.	2.2	24
75	High recombinant interleukin-2 sensitivity of peripheral blood lymphocytes from patients with Myasthenia Gravis: Correlations with clinical parameters. Journal of Autoimmunity, 1989, 2, 241-258.	3.0	23
76	Role of the thymus in autoimmune myasthenia gravis. Clinical and Experimental Neuroimmunology, 2016, 7, 226-237.	0.5	23
77	Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins. Journal of Autoimmunity, 2017, 82, 62-73.	3.0	23
78	Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model. JCI Insight, 2017, 2, e89665.	2.3	21
79	Circulating regulatory anti–T cell receptor antibodies in patients with myasthenia gravis. Journal of Clinical Investigation, 2003, 112, 265-274.	3.9	21
80	Antibodies to thymic epithelial cells in myasthenia gravis. Journal of Neuroimmunology, 1991, 35, 101-110.	1.1	20
81	Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration. Acta Neuropathologica, 2017, 134, 869-888.	3.9	20
82	Pathophysiological mechanisms of autoimmunity. Annals of the New York Academy of Sciences, 2018, 1413, 59-68.	1.8	20
83	Cultured Human Thymic-Derived Cells Display Medullary Thymic Epithelial Cell Phenotype and Functionality. Frontiers in Immunology, 2018, 9, 1663.	2.2	20
84	Isolation of potent human Fab fragments against a novel highly immunogenic region on human muscle acetylcholine receptor which protect the receptor from myasthenic autoantibodies. European Journal of Immunology, 2005, 35, 632-643.	1.6	19
85	Functional Fas Expression in Human Thymic Epithelial Cells. Blood, 1999, 93, 2660-2670.	0.6	18
86	Identifying Alternative Hyper-Splicing Signatures in MG-Thymoma by Exon Arrays. PLoS ONE, 2008, 3, e2392.	1.1	18
87	Regulatory B cells in myasthenia gravis are differentially affected by therapies. Annals of Clinical and Translational Neurology, 2018, 5, 1408-1414.	1.7	18
88	Use of Toll-Like Receptor Agonists to Induce Ectopic Lymphoid Structures in Myasthenia Gravis Mouse Models. Frontiers in Immunology, 2017, 8, 1029.	2.2	16
89	Modulation of acetylcholine receptor expression in seronegative myasthenia gravis. Annals of Neurology, 2000, 48, 696-705.	2.8	15
90	Silencing rapsyn in vivo decreases acetylcholine receptors and augments sodium channels and secondary postsynaptic membrane folding. Neurobiology of Disease, 2009, 35, 14-23.	2.1	15

#	Article	IF	CITATIONS
91	AIRE: a missing link to explain female susceptibility to autoimmune diseases. Annals of the New York Academy of Sciences, 2018, 1412, 21-32.	1.8	15
92	Decreased expression of miR-29 family associated with autoimmune myasthenia gravis. Journal of Neuroinflammation, 2020, 17, 294.	3.1	14
93	The benefits and tolerance of exercise in myasthenia gravis (MGEX): study protocol for a randomised controlled trial. Trials, 2018, 19, 49.	0.7	13
94	EMERGENCE OF INFLAMMATORY ALVEOLAR MACROPHAGES DURING REJECTION OR INFECTION AFTER LUNG TRANSPLANTATION. Transplantation, 1994, 57, 1621-1627.	0.5	13
95	Cortactin: A new target in autoimmune myositis and Myasthenia Gravis. Autoimmunity Reviews, 2014, 13, 1001-1002.	2.5	11
96	Particular phenotypic profile of blood lymphocytes during obliterative bronchiolitis syndrome following lung transplantation. Transplant Immunology, 1994, 2, 243-251.	0.6	10
97	Expression and modulation of ICAM-1, TNF-α and RANTES in human alveolar macrophages from lung-transplant recipients in vitro. Transplant Immunology, 1998, 6, 183-192.	0.6	10
98	Involvement of phosphodiesterases in autoimmune diseases. Journal of Neuroimmunology, 2010, 220, 43-51.	1.1	10
99	Experimental myasthenia gravis in Aireâ€deficient mice: a link between Aire and regulatory T cells. Annals of the New York Academy of Sciences, 2012, 1275, 107-113.	1.8	10
100	The Muscle Is Not a Passive Target in Myasthenia Gravis. Frontiers in Neurology, 2019, 10, 1343.	1.1	10
101	Myasthenia Gravis: An Acquired Interferonopathy?. Cells, 2022, 11, 1218.	1.8	9
102	Thymectomy in myasthenia gravis: when, why, and how?. Lancet Neurology, The, 2019, 18, 225-226.	4.9	8
103	Circulating regulatory anti–T cell receptor antibodies in patients with myasthenia gravis. Journal of Clinical Investigation, 2003, 112, 265-274.	3.9	8
104	T Cell deletion and unresponsiveness induced by intrathymic injection of staphylococcal enterotoxin B. Transplant Immunology, 2000, 8, 39-48.	0.6	7
105	Reduced thymic expression of ErbB receptors without auto-antibodies against synaptic ErbB in myasthenia gravis. Journal of Neuroimmunology, 2011, 232, 158-165.	1.1	7
106	Cutting edge in Myasthenia Gravis. Autoimmunity Reviews, 2013, 12, 861-862.	2.5	7
107	In vivo preferential usage of TCR V/gb8 in Torpedo acetylcholine receptor immune response in the murine experimental model of myasthenia gravis. Journal of Neuroimmunology, 1995, 58, 191-200.	1.1	6
108	DNA Microarray in Search of New Drug Targets for Myasthenia Gravis. Annals of the New York Academy of Sciences, 2007, 1107, 111-117.	1.8	6

#	Article	IF	CITATIONS
109	Normal human immunoglobulin suppresses experimental myasthenia gravis in SCID mice. , 1999, 29, 2436.		6
110	Comparative Analysis of Thymic and Blood Treg in Myasthenia Gravis: Thymic Epithelial Cells Contribute to Thymic Immunoregulatory Defects. Frontiers in Immunology, 2020, 11, 782.	2.2	6
111	Human Myoid Cells Protect Thymocytes from Apoptosis. Annals of the New York Academy of Sciences, 2003, 998, 266-269.	1.8	5
112	T-Cell Receptor Expression in the Thymus from Patients with Myasthenia Gravis. Annals of the New York Academy of Sciences, 1995, 756, 438-440.	1.8	4
113	Vaccines against myasthenia gravis. Expert Opinion on Biological Therapy, 2005, 5, 983-995.	1.4	4
114	Expression of ciliary neurotrophic factor receptor in myasthenia gravis. Journal of Neuroimmunology, 2001, 120, 180-189.	1.1	3
115	Characterization of a Fully Human IgG1 Reconstructed from an Anti-AChR Fab. Annals of the New York Academy of Sciences, 2003, 998, 399-400.	1.8	3
116	Human Embryonic Stem Cells Prevent T-Cell Activation by Suppressing Dendritic Cells Function via TGF-Beta Signaling Pathway. Stem Cells, 2014, 32, 3137-3149.	1.4	3
117	Editorial: Advances in Autoimmune Myasthenia Gravis. Frontiers in Immunology, 2020, 11, 1688.	2.2	3
118	Phenotypic and functional studies of CD21 on human thymocytes. Molecular Immunology, 1998, 35, 346.	1.0	2
119	Kinetic analysis of microchimerism induced by intrathymic injection of allogeneic splenocytes in mice. Transplant Immunology, 2000, 8, 31-37.	0.6	2
120	Human thymus contains IFN-α-producing CD11c–, myeloid CD11c+, and mature interdigitating dendritic cells. Journal of Clinical Investigation, 2001, 108, 1237-1237.	3.9	2
121	Imbalance between T follicular helper and T follicular regulatory cells in myasthenia gravis. Journal of Xiangya Medicine, 2017, 2, 22-22.	0.2	1
122	Immunopathogenesis of Myasthenia Gravis. , 2018, , 47-60.		1
123	Two Signaling Pathways Can Increase Fas Expression in Human Thymocytes. Blood, 1998, 92, 1297-1307.	0.6	1
124	Comparison of T cell sites recognized by thymic and blood lymphocytes in Myasthenia Gravis patients. Journal of Autoimmunity, 1989, 2, 902-903.	3.0	0
125	Trans-encoded DQαβ heterodimers confer susceptibility to myasthenia gravis disease. Neuromuscular Disorders, 1994, 4, S3.	0.3	0
126	Integrative analysis of DNA methylation and gene expression identifies distinct profiles among immune cells subsets. Journal of Neuroimmunology, 2014, 275, 67-68.	1.1	0

#	ARTICLE	IF	CITATIONS
127	Tolerance of a Transgenic Self Antigen Expressed in the Thymus: Implication for Myasthenia gravis. , 2000, , 20-27.		0
128	Evidence for an Upregulation of Acetylcholine Receptor Messenger Subunits Triggered by Antibody-Mediated Receptor Internalization in Human Myasthenia Gravis Muscles. , 2000, , 141-149.		0
129	Functional Fas Expression in Human Thymic Epithelial Cells. Blood, 1999, 93, 2660-2670.	0.6	0