Ahmed Shahat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2011660/publications.pdf

Version: 2024-02-01

94381 128225 4,139 61 37 60 citations h-index g-index papers 62 62 62 2734 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media. Chemical Engineering Journal, 2015, 273, 286-295.	6.6	304
2	Investigation of ligand immobilized nano-composite adsorbent for efficient cerium(III) detection and recovery. Chemical Engineering Journal, 2015, 265, 210-218.	6.6	271
3	Functional ligand anchored nanomaterial based facial adsorbent for cobalt(II) detection and removal from water samples. Chemical Engineering Journal, 2015, 271, 155-163.	6.6	230
4	Novel hierarchical composite adsorbent for selective lead(II) ions capturing from wastewater samples. Chemical Engineering Journal, 2018, 332, 377-386.	6.6	201
5	Novel nano-conjugate materials for effective arsenic(V) and phosphate capturing in aqueous media. Chemical Engineering Journal, 2018, 331, 54-63.	6.6	185
6	Efficient adsorbents of nanoporous aluminosilicate monoliths for organic dyes from aqueous solution. Journal of Colloid and Interface Science, 2011, 359, 9-18.	5.0	173
7	Functionalized novel mesoporous adsorbent for selective lead(II) ions monitoring and removal from wastewater. Sensors and Actuators B: Chemical, 2014, 203, 854-863.	4.0	171
8	Visual nickel(II) ions treatment in petroleum samples using a mesoporous composite adsorbent. Chemical Engineering Journal, 2018, 334, 957-967.	6.6	170
9	Efficient toxic nitrite monitoring and removal from aqueous media with ligand based conjugate materials. Journal of Molecular Liquids, 2019, 285, 20-26.	2.3	165
10	Large three-dimensional mesocage pores tailoring silica nanotubes as membrane filters: nanofiltration and permeation flux of proteins. Journal of Materials Chemistry, 2011, 21, 5593.	6.7	150
11	Simultaneous optical detection and extraction of cobalt(II) from lithium ion batteries using nanocollector monoliths. Sensors and Actuators B: Chemical, 2013, 176, 1015-1025.	4.0	146
12	Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater. Microchemical Journal, 2021, 164, 105967.	2.3	115
13	Optical metal-organic framework sensor for selective discrimination of some toxic metal ions in water. Analytica Chimica Acta, 2013, 793, 90-98.	2.6	103
14	Sensitive and selective fluorometric determination and monitoring of Zn2+ ions using supermicroporous Zr-MOFs chemosensors. Microchemical Journal, 2018, 139, 24-33.	2.3	74
15	Tailorâ€Made Microâ€Object Optical Sensor Based on Mesoporous Pellets for Visual Monitoring and Removal of Toxic Metal Ions from Aqueous Media. Small, 2013, 9, 2288-2296.	5. 2	71
16	Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors. Journal of Luminescence, 2018, 198, 438-448.	1.5	70
17	Magnetic metal oxide-organic framework material for ultrasonic-assisted sorption of titan yellow and rose bengal from aqueous solutions. Chemical Engineering Journal, 2020, 392, 123635.	6.6	67
18	Investigation of novel nanomaterial for the removal of toxic substances from contaminated water. RSC Advances, 2019, 9, 14167-14175.	1.7	66

#	Article	IF	CITATIONS
19	Eco-friendly facile synthesis of glucose–derived microporous carbon spheres electrodes with enhanced performance for water capacitive deionization. Desalination, 2020, 477, 114278.	4.0	63
20	Multiuse Al-MOF Chemosensors for Visual Detection and Removal of Mercury Ions in Water and Skin-Whitening Cosmetics. ACS Sustainable Chemistry and Engineering, 2020, 8, 15097-15107.	3.2	63
21	Organic–inorganic mesoporous silica nanostrands for ultrafine filtration of spherical nanoparticles. Chemical Communications, 2010, 46, 3917.	2.2	62
22	Ultra-trace recognition and removal of toxic chromium (VI) ions from water using visual mesocaptor. Journal of Hazardous Materials, 2013, 244-245, 726-735.	6.5	58
23	Colorimetric determination of Cu(II) ions in biological samples using metal-organic framework as scaffold. Sensors and Actuators B: Chemical, 2016, 233, 272-280.	4.0	58
24	Optical recognition and removal of Hg(II) using a new self-chemosensor based on a modified amino-functionalized Al-MOF. Sensors and Actuators B: Chemical, 2017, 253, 164-172.	4.0	58
25	Buildingâ€Blockâ€Based Mosaic Cage Silica Nanotubes for Molecular Transport and Separation. Small, 2011, 7, 62-65.	5.2	57
26	The synergistic effect of ultrasound power and magnetite incorporation on the sorption/desorption behavior of Cr(VI) and As(V) oxoanions in an aqueous system. Journal of Colloid and Interface Science, 2020, 569, 76-88.	5.0	56
27	A ligand-anchored optical composite material for efficient vanadium(<scp>ii</scp>) adsorption and detection in wastewater. New Journal of Chemistry, 2019, 43, 10324-10335.	1.4	55
28	Ratiometric Fluorescent Chemosensor for Zn ²⁺ lons in Environmental Samples Using Supermicroporous Organicâ€norganic Structures as Potential Platforms. ChemistrySelect, 2017, 2, 11083-11090.	0.7	52
29	Novel and potential chemical sensors for Au(III) ion detection and recovery in electric waste samples. Microchemical Journal, 2020, 158, 105312.	2.3	52
30	Optical Nanosphere Sensor Based on Shellâ€Byâ€Shell Fabrication for Removal of Toxic Metals from Human Blood. Advanced Healthcare Materials, 2013, 2, 854-862.	3.9	50
31	Colorimetric determination of some toxic metal ions in post-mortem biological samples. Sensors and Actuators B: Chemical, 2015, 221, 1027-1034.	4.0	50
32	Optical supermicrosensor responses for simple recognition and sensitive removal of Cu (II) Ion target. Talanta, 2011, 83, 1341-1351.	2.9	49
33	Mesoporous aluminosilica monoliths for the adsorptive removal of small organic pollutants. Journal of Hazardous Materials, 2012, 201-202, 23-32.	6.5	47
34	Sensitive, selective, and rapid method for optical recognition of ultra-traces level of $Hg(II)$, $Ag(I)$, $Au(III)$, and $Pd(II)$ in electronic wastes. Sensors and Actuators B: Chemical, 2017, 245, 789-802.	4.0	44
35	A ligand-based conjugate solid sensor for colorimetric ultra-trace gold(III) detection in urban mining waste. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123842.	2.3	44
36	A novel and potential chemical sensor for effective monitoring of Fe(II) ion in corrosion systems of water samples. Microchemical Journal, 2020, 154, 104578.	2.3	44

#	Article	IF	Citations
37	Superior adsorption and removal of aquaculture and bio-staining dye from industrial wastewater using microporous nanocubic Zn-MOFs. Microporous and Mesoporous Materials, 2022, 329, 111506.	2.2	42
38	Mesoporous silica nanotubes hybrid membranes for functional nanofiltration. Nanotechnology, 2010, 21, 375603.	1.3	36
39	Highly ordered, thermally/hydrothermally stable cubic Ia3d aluminosilica monoliths with low silica in frameworks. Microporous and Mesoporous Materials, 2011, 138, 51-62.	2.2	33
40	Ultrahigh performance of novel energy-efficient capacitive deionization electrodes based on 3D nanotubular composites. New Journal of Chemistry, 2018, 42, 3560-3567.	1.4	31
41	Nano-model membrane filters for the well-controlled separation of biomolecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 44-53.	2.3	28
42	Synthesis and characterization of NH2-MIL-88(Fe) for efficient adsorption of dyes. Journal of Molecular Structure, 2022, 1258, 132662.	1.8	28
43	Efficient dual sensor of alternate nanomaterials for sensitive and rapid monitoring of ultra-trace phenols in sea water. Journal of Molecular Liquids, 2020, 297, 111798.	2.3	25
44	Preparation, structural characterization and biological evaluation of l-tyrosinate metal ion complexes. Journal of Molecular Structure, 2008, 881, 28-45.	1.8	23
45	Mesoporous hexagonal and cubic aluminosilica adsorbents for toxic nitroanilines from water. Environmental Science and Pollution Research, 2013, 20, 3863-3876.	2.7	22
46	Incorporation of metalâ€organic framework aminoâ€modified MILâ€101 into glycidyl methacrylate monoliths for nano LC separation. Journal of Separation Science, 2019, 42, 834-842.	1.3	22
47	A novel sensitive and selective chemosensor for fluorescent detection of Zn ²⁺ in cosmetics creams based on a covalent post functionalized Al-MOF. New Journal of Chemistry, 2021, 45, 8054-8063.	1.4	19
48	Controlled fabrication of TiO2rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application. Nanotechnology, 2011, 22, 275709.	1.3	18
49	Decorated nanosphere mesoporous silica chemosensors for rapid screening and removal of toxic cadmium ions in well water samples. Microchemical Journal, 2020, 156, 104806.	2.3	18
50	Functionalized silica nanotubes with azo-chromophore for enhanced Pd2+ and Co2+ ions monitoring in E-wastes. Journal of Molecular Liquids, 2021, 329, 115585.	2.3	17
51	Efficient sucrose-derived mesoporous carbon sphere electrodes with enhanced hydrophilicity for water capacitive deionization at low cell voltages. New Journal of Chemistry, 2021, 45, 1904-1914.	1.4	13
52	Mesopores silica nanotubes-based sensors for the highly selective and rapid detection of Fe2+ ions in wastewater, boiler system units and biological samples. Analytica Chimica Acta, 2021, 1180, 338860.	2.6	12
53	Development of a novel and potential chemical sensor for colorimetric detection of Pd(II) or Cu(II) in E-wastes. Microchemical Journal, 2022, 172, 106951.	2.3	12
54	Spectral and thermal studies of alloxan complexes. Journal of Coordination Chemistry, 2008, 61, 1935-1950.	0.8	11

#	Article	IF	CITATION
55	Sensitive Determination of SARS-COV-2 and the Anti-hepatitis C Virus Agent Velpatasvir Enabled by Novel Metal–Organic Frameworks. ACS Omega, 2021, 6, 26791-26798.	1.6	8
56	Functionalized MOF as a Sensitive Spectroscopic Probe for Hg ²⁺ , Co ²⁺ , and Al ³⁺ lons Detection in Aqueous Media. ACS Omega, 2022, 7, 17483-17491.	1.6	8
57	Spectrophotometric and Fluorometric Methods for the Determination of Fe(III) Ions in Water and Pharmaceutical Samples. ACS Omega, 2022, 7, 1288-1298.	1.6	7
58	Experimental and statistical investigation of adsorption mechanism of toxic chromium on Al-Fe-Zn oxide nanocomposite and successful application on industrial wastewater. International Journal of Environmental Analytical Chemistry, 0, , 1-15.	1.8	6
59	Eco-friendly green synthesis of functionalized mesoporous silica nanospheres for the determination of Al(III) ions in multiple samples of different kinds of water. Arabian Journal of Chemistry, 2021, 14, 103419.	2.3	3
60	Development of a Sensitive and Selective Optical Sensor for Measuring Ultraâ€Trace Amounts of Fe(II) and Fe(III) lons in Water. ChemistrySelect, 2022, 7, .	0.7	2
61	Azo-chromophore based on functionalized silica nanotubes for enhanced identification of Pd(II) ions in e-residues. Journal of Materials Research and Technology, 2022, 17, 2550-2550.	2.6	O