
## Jeffrey M Spraggins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2011463/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rapid Multivariate Analysis Approach to Explore Differential Spatial Protein Profiles in Tissue. Journal of Proteome Research, 2023, 22, 1394-1405.                                                                                               | 1.8  | 4         |
| 2  | Highly multiplexed immunofluorescence of the human kidney using co-detection by indexing. Kidney<br>International, 2022, 101, 137-143.                                                                                                            | 2.6  | 27        |
| 3  | Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nature Methods, 2022, 19, 284-295.                                                                                               | 9.0  | 156       |
| 4  | High Spatial Resolution MALDI Imaging Mass Spectrometry of Fresh-Frozen Bone. Analytical Chemistry, 2022, 94, 3165-3172.                                                                                                                          | 3.2  | 20        |
| 5  | Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry.<br>Frontiers in Physiology, 2022, 13, 837773.                                                                                                         | 1.3  | 6         |
| 6  | Referenced Kendrick Mass Defect Annotation and Class-Based Filtering of Imaging MS Lipidomics<br>Experiments. Analytical Chemistry, 2022, 94, 5504-5513.                                                                                          | 3.2  | 4         |
| 7  | Multimodal Imaging Mass Spectrometry of Murine Gastrointestinal Tract with Retained Luminal Content. Journal of the American Society for Mass Spectrometry, 2022, 33, 1073-1076.                                                                  | 1.2  | 2         |
| 8  | Viv: multiscale visualization of high-resolution multiplexed bioimaging data on the web. Nature Methods, 2022, 19, 515-516.                                                                                                                       | 9.0  | 21        |
| 9  | Multi-contrast computed tomography healthy kidney atlas. Computers in Biology and Medicine, 2022, 146, 105555.                                                                                                                                    | 3.9  | 4         |
| 10 | Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis. Cell, 2022, 185, 2148-2163.e27.                                                                                                                             | 13.5 | 39        |
| 11 | New Views of Old Proteins: Clarifying the Enigmatic Proteome. Molecular and Cellular Proteomics, 2022, 21, 100254.                                                                                                                                | 2.5  | 16        |
| 12 | Visualizing Staphylococcus aureus pathogenic membrane modification within the host infection environment by multimodal imaging mass spectrometry. Cell Chemical Biology, 2022, 29, 1209-1217.e4.                                                  | 2.5  | 4         |
| 13 | Spatially Targeted Proteomics of the Host–Pathogen Interface during Staphylococcal Abscess<br>Formation. ACS Infectious Diseases, 2021, 7, 101-113.                                                                                               | 1.8  | 17        |
| 14 | Construction of a multi-phase contrast computed tomography kidney atlas. , 2021, 11596, .                                                                                                                                                         |      | 1         |
| 15 | Renal cortex, medulla and pelvicaliceal system segmentation on arterial phase CT images with random patch-based networks. , 2021, 11596, .                                                                                                        |      | 3         |
| 16 | Molecular Mapping of Neutral Lipids Using Silicon Nanopost Arrays and TIMS Imaging Mass<br>Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 2519-2527.                                                              | 1.2  | 5         |
| 17 | α-Cyano-4-hydroxycinnamic Acid and Tri-Potassium Citrate Salt Pre-Coated Silicon Nanopost Array<br>Provides Enhanced Lipid Detection for High Spatial Resolution MALDI Imaging Mass Spectrometry.<br>Analytical Chemistry, 2021, 93, 12243-12249. | 3.2  | 9         |
| 18 | Automated biomarker candidate discovery in imaging mass spectrometry data through spatially localized Shapley additive explanations. Analytica Chimica Acta, 2021, 1177, 338522.                                                                  | 2.6  | 20        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Enhancement of Tryptic Peptide Signals from Tissue Sections Using MALDI IMS Postionization (MALDI-2). Journal of the American Society for Mass Spectrometry, 2021, 32, 2583-2591.                       | 1.2 | 14        |
| 20 | Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host. Cell Reports, 2021, 36, 109683.                                                   | 2.9 | 16        |
| 21 | Cadherin-11, Sparc-related modular calcium binding protein-2, and Pigment epithelium-derived factor are promising non-invasive biomarkers of kidney fibrosis. Kidney International, 2021, 100, 672-683. | 2.6 | 21        |
| 22 | Protocol for multimodal analysis of human kidney tissue by imaging mass spectrometry and CODEX multiplexed immunofluorescence. STAR Protocols, 2021, 2, 100747.                                         | 0.5 | 14        |
| 23 | Uncovering matrix effects on lipid analyses in MALDI imaging mass spectrometry experiments. Journal of Mass Spectrometry, 2020, 55, e4491.                                                              | 0.7 | 48        |
| 24 | Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress. Cell Reports, 2020, 32, 108129.                        | 2.9 | 14        |
| 25 | Spatial Metabolomics of the Human Kidney using MALDI Trapped Ion Mobility Imaging Mass<br>Spectrometry. Analytical Chemistry, 2020, 92, 13084-13091.                                                    | 3.2 | 49        |
| 26 | Methyltransferase Contingencies in the Pathway of Everninomicin D Antibiotics and Analogues.<br>ChemBioChem, 2020, 21, 3349-3358.                                                                       | 1.3 | 4         |
| 27 | 35th ASMS Asilomar Conference on Mass Spectrometry. Mass Spectrometry Imaging: New<br>Developments and Applications. Journal of the American Society for Mass Spectrometry, 2020, 31,<br>2390-2391.     | 1.2 | Ο         |
| 28 | Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine.<br>Journal of the American Society for Mass Spectrometry, 2020, 31, 2401-2415.                         | 1.2 | 68        |
| 29 | Bifunctional Nitrone-Conjugated Secondary Metabolite Targeting the Ribosome. Journal of the<br>American Chemical Society, 2020, 142, 18369-18377.                                                       | 6.6 | 7         |
| 30 | Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. Journal of Experimental Medicine, 2020, 217, .                                 | 4.2 | 142       |
| 31 | Dynamic Range Expansion by Gas-Phase Ion Fractionation and Enrichment for Imaging Mass<br>Spectrometry. Analytical Chemistry, 2020, 92, 13092-13100.                                                    | 3.2 | 17        |
| 32 | Resolving the Complexity of Spatial Lipidomics Using MALDI TIMS Imaging Mass Spectrometry.<br>Analytical Chemistry, 2020, 92, 13290-13297.                                                              | 3.2 | 70        |
| 33 | Use of Single-Cell -Omic Technologies to Study the Gastrointestinal Tract and Diseases, From Single<br>Cell Identities to Patient Features. Gastroenterology, 2020, 159, 453-466.e1.                    | 0.6 | 17        |
| 34 | Lipid Landscape of the Human Retina and Supporting Tissues Revealed by High-Resolution Imaging Mass<br>Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 2426-2436.        | 1.2 | 28        |
| 35 | Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: A brief review and perspective. Journal of Mass Spectrometry, 2020, 55, e4614.                 | 0.7 | 31        |
| 36 | Integrated molecular imaging technologies for investigation of metals in biological systems: A brief review. Current Opinion in Chemical Biology, 2020, 55, 127-135.                                    | 2.8 | 17        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Discovering New Lipidomic Features Using Cell Type Specific Fluorophore Expression to Provide<br>Spatial and Biological Specificity in a Multimodal Workflow with MALDI Imaging Mass Spectrometry.<br>Analytical Chemistry, 2020, 92, 7079-7086.    | 3.2 | 26        |
| 38 | Effect of MALDI matrices on lipid analyses of biological tissues using MALDIâ $\in 2$ postionization mass spectrometry. Journal of Mass Spectrometry, 2020, 55, e4663.                                                                              | 0.7 | 29        |
| 39 | High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass<br>Spectrometry. Analytical Chemistry, 2019, 91, 14552-14560.                                                                                      | 3.2 | 148       |
| 40 | <i>Staphylococcus aureus</i> exhibits heterogeneous siderophore production within the vertebrate<br>host. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>21980-21982.                               | 3.3 | 62        |
| 41 | Combining MALDIâ€2 and transmission geometry laser optics to achieve high sensitivity for ultraâ€high spatial resolution surface analysis. Journal of Mass Spectrometry, 2019, 54, 366-370.                                                         | 0.7 | 35        |
| 42 | Two Specific Sulfatide Species Are Dysregulated during Renal Development in a Mouse Model of Alport<br>Syndrome. Lipids, 2019, 54, 411-418.                                                                                                         | 0.7 | 10        |
| 43 | The importance of clinical tissue imaging. Clinical Mass Spectrometry, 2019, 12, 47-49.                                                                                                                                                             | 1.9 | 6         |
| 44 | MicroLESA: Integrating Autofluorescence Microscopy, In Situ Micro-Digestions, and Liquid Extraction<br>Surface Analysis for High Spatial Resolution Targeted Proteomic Studies. Analytical Chemistry, 2019,<br>91, 7578-7585.                       | 3.2 | 51        |
| 45 | Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue.<br>Diabetologia, 2019, 62, 1036-1047.                                                                                                                   | 2.9 | 33        |
| 46 | Protein identification strategies in MALDI imaging mass spectrometry: a brief review. Current Opinion in Chemical Biology, 2019, 48, 64-72.                                                                                                         | 2.8 | 121       |
| 47 | Enhanced Ion Transmission Efficiency up to <i>m</i> / <i>z</i> 24â€~000 for MALDI Protein Imaging Mass<br>Spectrometry. Analytical Chemistry, 2018, 90, 5090-5099.                                                                                  | 3.2 | 41        |
| 48 | Protein identification in imaging mass spectrometry through spatially targeted liquid microâ€extractions. Rapid Communications in Mass Spectrometry, 2018, 32, 442-450.                                                                             | 0.7 | 27        |
| 49 | Regional differences in brain glucose metabolism determined by imaging mass spectrometry.<br>Molecular Metabolism, 2018, 12, 113-121.                                                                                                               | 3.0 | 40        |
| 50 | Integrated molecular imaging reveals tissue heterogeneity driving host-pathogen interactions.<br>Science Translational Medicine, 2018, 10, .                                                                                                        | 5.8 | 58        |
| 51 | Viewing the Future of IR through Molecular Histology: An Overview of Imaging Mass Spectrometry.<br>Journal of Vascular and Interventional Radiology, 2018, 29, 1543-1546.e1.                                                                        | 0.2 | 2         |
| 52 | Response of Secondary Metabolism of Hypogean Actinobacterial Genera to Chemical and Biological<br>Stimuli. Applied and Environmental Microbiology, 2018, 84, .                                                                                      | 1.4 | 26        |
| 53 | Integrated, High-Throughput, Multiomics Platform Enables Data-Driven Construction of Cellular<br>Responses and Reveals Global Drug Mechanisms of Action. Journal of Proteome Research, 2017, 16,<br>1364-1375.                                      | 1.8 | 34        |
| 54 | Connecting imaging mass spectrometry and magnetic resonance imaging-based anatomical atlases for<br>automated anatomical interpretation and differential analysis. Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2017, 1865, 967-977. | 1.1 | 44        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bis(monoacylglycero)phosphate lipids in the retinal pigment epithelium implicate<br>lysosomal/endosomal dysfunction in a model of Stargardt disease and human retinas. Scientific<br>Reports, 2017, 7, 17352.              | 1.6 | 37        |
| 56 | Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging. Experimental Eye Research, 2017, 154, 70-78.                                                           | 1.2 | 30        |
| 57 | Trypsin and MALDI matrix preâ€coated targets simplify sample preparation for mapping proteomic distributions within biological tissues by imaging mass spectrometry. Journal of Mass Spectrometry, 2016, 51, 1168-1179.    | 0.7 | 19        |
| 58 | Nextâ€generation technologies for spatial proteomics: Integrating ultraâ€high speed MALDIâ€TOF and high<br>mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics, 2016, 16,<br>1678-1689. | 1.3 | 123       |
| 59 | Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma. Oncotarget, 2016, 7, 12582-12597.                                    | 0.8 | 58        |
| 60 | Decellularization of intact tissue enables MALDI imaging mass spectrometry analysis of the extracellular matrix. Journal of Mass Spectrometry, 2015, 50, 1288-1293.                                                        | 0.7 | 32        |
| 61 | MALDI imaging reveals lipid changes in the skin of leprosy patients before and after multidrug therapy<br>(MDT). Journal of Mass Spectrometry, 2015, 50, 1374-1385.                                                        | 0.7 | 18        |
| 62 | MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0. , 2015, 56, 7398.                                                                                         |     | 42        |
| 63 | MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data.<br>Journal of the American Society for Mass Spectrometry, 2015, 26, 974-985.                                          | 1.2 | 95        |
| 64 | EXIMS: an improved data analysis pipeline based on a new peak picking method for EXploring Imaging<br>Mass Spectrometry data. Bioinformatics, 2015, 31, 3198-3206.                                                         | 1.8 | 31        |
| 65 | Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. Nature Methods, 2015, 12, 366-372.                                                                                | 9.0 | 240       |
| 66 | High Spatial Resolution Imaging Mass Spectrometry of Human Optic Nerve Lipids and Proteins. Journal of the American Society for Mass Spectrometry, 2015, 26, 940-947.                                                      | 1.2 | 32        |
| 67 | Nonâ€small cell lung cancer is characterized by dramatic changes in phospholipid profiles.<br>International Journal of Cancer, 2015, 137, 1539-1548.                                                                       | 2.3 | 143       |
| 68 | Determination of N-retinylidene-N-retinylethanolamine (A2E) levels in central and peripheral areas of<br>human retinal pigment epithelium. Photochemical and Photobiological Sciences, 2015, 14, 1983-1990.                | 1.6 | 26        |
| 69 | The utilization of fluorescence to identify the components of lipofuscin by imaging mass spectrometry. Proteomics, 2014, 14, 936-944.                                                                                      | 1.3 | 24        |
| 70 | A derivatization and validation strategy for determining the spatial localization of endogenous amine<br>metabolites in tissues using MALDI imaging mass spectrometry. Journal of Mass Spectrometry, 2014, 49,<br>665-673. | 0.7 | 81        |
| 71 | High Resolution MALDI Imaging Mass Spectrometry of Retinal Tissue Lipids. Journal of the American<br>Society for Mass Spectrometry, 2014, 25, 1394-1403.                                                                   | 1.2 | 92        |
| 72 | Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. Journal of Lipid<br>Research, 2014, 55, 1375-1385.                                                                                   | 2.0 | 95        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | High-resolution matrix-assisted laser desorption ionization-imaging mass spectrometry of lipids in rodent optic nerve tissue. Molecular Vision, 2013, 19, 581-92.                                                     | 1.1  | 27        |
| 74 | Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv)<br>Recombinant Antibodies. Journal of the American Society for Mass Spectrometry, 2012, 23, 1689-1696.                        | 1.2  | 23        |
| 75 | Enhanced Sensitivity for High Spatial Resolution Lipid Analysis by Negative Ion Mode Matrix Assisted<br>Laser Desorption Ionization Imaging Mass Spectrometry. Analytical Chemistry, 2012, 84, 1557-1564.             | 3.2  | 194       |
| 76 | MALDI Imaging of Lipid Biochemistry in Tissues by Mass Spectrometry. Chemical Reviews, 2011, 111, 6491-6512.                                                                                                          | 23.0 | 320       |
| 77 | High-Speed MALDI-TOF Imaging Mass Spectrometry: Rapid Ion Image Acquisition and Considerations for<br>Next Generation Instrumentation. Journal of the American Society for Mass Spectrometry, 2011, 22,<br>1022-1031. | 1.2  | 137       |
| 78 | Fragmentation mechanisms of oxidized peptides elucidated by SID, RRKM modeling, and molecular dynamics. Journal of the American Society for Mass Spectrometry, 2009, 20, 1579-1592.                                   | 1.2  | 10        |
| 79 | Peptide ozonolysis: Product structures and relative reactivities for oxidation of tyrosine and histidine residues. Journal of the American Society for Mass Spectrometry, 2006, 17, 1289-1298.                        | 1.2  | 22        |
| 80 | Is It Necessary To Dry Primary Standards before Analysis?. Journal of Chemical Education, 2005, 82, 311.                                                                                                              | 1.1  | 1         |