
André Görgens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2011221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
2	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	5.5	1,020
3	Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Translational Medicine, 2015, 4, 1131-1143.	1.6	584
4	MIFlowCytâ€EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. Journal of Extracellular Vesicles, 2020, 9, 1713526.	5.5	243
5	Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescenceâ€ŧagged vesicles as biological reference material. Journal of Extracellular Vesicles, 2019, 8, 1587567.	5.5	224
6	Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Scientific Reports, 2017, 7, 11561.	1.6	168
7	Systematic Methodological Evaluation of a Multiplex Bead-Based Flow Cytometry Assay for Detection of Extracellular Vesicle Surface Signatures. Frontiers in Immunology, 2018, 9, 1326.	2.2	168
8	Revision of the Human Hematopoietic Tree: Granulocyte Subtypes Derive from Distinct Hematopoietic Lineages. Cell Reports, 2013, 3, 1539-1552.	2.9	133
9	Quantification of extracellular vesicles <i>in vitro</i> and <i>in vivo</i> using sensitive bioluminescence imaging. Journal of Extracellular Vesicles, 2020, 9, 1800222.	5.5	114
10	Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. International Journal of Cancer, 2013, 133, 1653-1663.	2.3	107
11	Systematic characterization of extracellular vesicle sorting domains and quantification at the single molecule – single vesicle level by fluorescence correlation spectroscopy and single particle imaging. Journal of Extracellular Vesicles, 2019, 8, 1663043.	5.5	96
12	Identification of storage conditions stabilizing extracellular vesicles preparations. Journal of Extracellular Vesicles, 2022, 11, .	5.5	91
13	Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. Journal of Extracellular Vesicles, 2019, 8, 1588555.	5.5	86
14	Superior Therapeutic Index in Lymphoma Therapy: CD30+ CD34+ Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-cell Attack. Molecular Therapy, 2016, 24, 1423-1434.	3.7	62
15	Genome-wide methylation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tumor classification. Neuro-Oncology, 2021, 23, 1087-1099.	0.6	59
16	Label-Free Surface Protein Profiling of Extracellular Vesicles by an Electrokinetic Sensor. ACS Sensors, 2019, 4, 1399-1408.	4.0	54
17	GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain. Nature Communications, 2021, 12, 6666.	5.8	42
18	Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nature Biomedical Engineering, 2021, 5, 1084-1098.	11.6	41

#	Article	IF	CITATIONS
19	Multipotent Hematopoietic Progenitors Divide Asymmetrically to Create Progenitors of the Lymphomyeloid and Erythromyeloid Lineages. Stem Cell Reports, 2014, 3, 1058-1072.	2.3	39
20	Circulating Tumor Cell Composition in Renal Cell Carcinoma. PLoS ONE, 2016, 11, e0153018.	1.1	38
21	GFI1 as a novel prognostic and therapeutic factor for AML/MDS. Leukemia, 2016, 30, 1237-1245.	3.3	37
22	New relationships of human hematopoietic lineages facilitate detection of multipotent hematopoietic stem and progenitor cells. Cell Cycle, 2013, 12, 3478-3482.	1.3	35
23	<scp>CD</scp> 133 allows elaborated discrimination and quantification of haematopoietic progenitor subsets in human haematopoietic stem cell transplants. British Journal of Haematology, 2015, 169, 868-878.	1.2	31
24	Multiparametric Profiling of Single Nanoscale Extracellular Vesicles by Combined Atomic Force and Fluorescence Microscopy: Correlation and Heterogeneity in Their Molecular and Biophysical Features. Small, 2021, 17, e2008155.	5.2	31
25	<scp>Highâ€Resolution</scp> Imaging Flow Cytometry Reveals Impact of Incubation Temperature on Labeling of Extracellular Vesicles with Antibodies. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 602-609.	1.1	30
26	Analysis of individual extracellular vesicles by imaging flow cytometry. Methods in Enzymology, 2020, 645, 55-78.	0.4	29
27	Growth Media Conditions Influence the Secretion Route and Release Levels of Engineered Extracellular Vesicles. Advanced Healthcare Materials, 2022, 11, e2101658.	3.9	28
28	Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle. Biomaterials, 2021, 266, 120435.	5.7	26
29	A Therapeutic Antiviral Antibody Inhibits the Anterograde Directed Neuron-to-Cell Spread of Herpes Simplex Virus and Protects against Ocular Disease. Frontiers in Microbiology, 2017, 8, 2115.	1.5	25
30	Prevention of Herpes Simplex Virus Induced Stromal Keratitis by a Glycoprotein B-Specific Monoclonal Antibody. PLoS ONE, 2015, 10, e0116800.	1.1	24
31	Human mesenchymal and murine stromal cells support human lympho-myeloid progenitor expansion but not maintenance of multipotent haematopoietic stem and progenitor cells. Cell Cycle, 2016, 15, 540-545.	1.3	23
32	Distinct Spatio-Temporal Dynamics of Tumor-Associated Neutrophils in Small Tumor Lesions. Frontiers in Immunology, 2019, 10, 1419.	2.2	23
33	Salivary extracellular vesicles inhibit Zika virus but not SARSâ€CoVâ€2Âinfection. Journal of Extracellular Vesicles, 2020, 9, 1808281.	5.5	23
34	Gfi1b: a key player in the genesis and maintenance of acute myeloid leukemia and myelodysplastic syndrome. Haematologica, 2018, 103, 614-625.	1.7	21
35	Extracellular vesicles are the primary source of bloodâ€borne tumourâ€derived mutant <i>KRAS</i> DNA early in pancreatic cancer. Journal of Extracellular Vesicles, 2021, 10, e12142.	5.5	21
36	InÂVitro Generation of Vascular Wall-Resident Multipotent Stem Cells ofÂMesenchymal Nature from Murine Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 8, 919-932.	2.3	20

André Görgens

#	Article	IF	CITATIONS
37	Human Amnion Epithelial Cells Impair T Cell Proliferation: The Role of HLA-G and HLA-E Molecules. Cells, 2020, 9, 2123.	1.8	19
38	MIFlowCytâ€EV: The Next Chapter in the Reporting and Reliability of Single Extracellular Vesicle Flow Cytometry Experiments. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 365-368.	1.1	18
39	Human Cord Blood B Cells Differ from the Adult Counterpart by Conserved Ig Repertoires and Accelerated Response Dynamics. Journal of Immunology, 2021, 206, 2839-2851.	0.4	18
40	Epigenetic therapy as a novel approach for GFI136N-associated murine/human AML. Experimental Hematology, 2016, 44, 713-726.e14.	0.2	16
41	Concise Review: Asymmetric Cell Divisions in Stem Cell Biology. Symmetry, 2015, 7, 2025-2037.	1.1	15
42	Enforced GFI1 expression impedes human and murine leukemic cell growth. Scientific Reports, 2017, 7, 15720.	1.6	13
43	Lipid raft redistribution and morphological cell polarization are separable processes providing a basis for hematopoietic stem and progenitor cell migration. International Journal of Biochemistry and Cell Biology, 2012, 44, 1121-1132.	1.2	12
44	Mesenchymal stem/stromal cellâ€derived extracellular vesicles as a new approach in stem cell therapy. ISBT Science Series, 2016, 11, 228-234.	1.1	10
45	Diagnostic and Prognostic Utility of the Extracellular Vesicles Subpopulations Present in Pleural Effusion. Biomolecules, 2021, 11, 1606.	1.8	10
46	CpG stimulation of chronic lymphocytic leukemia cells induces a polarized cell shape and promotes migration in vitro and in vivo. PLoS ONE, 2020, 15, e0228674.	1.1	9
47	CEACAM1-4L Promotes Anchorage-Independent Growth in Melanoma. Frontiers in Oncology, 2015, 5, 234.	1.3	8
48	Translocation-generated ITK-FER and ITK-SYK fusions induce STAT3 phosphorylation and CD69 expression. Biochemical and Biophysical Research Communications, 2018, 504, 749-752.	1.0	8
49	MPAPASS software enables stitched multiplex, multidimensional EV repertoire analysis and a standard framework for reporting bead-based assays. Cell Reports Methods, 2022, 2, 100136.	1.4	8
50	Differential B-Cell Receptor Signaling Requirement for Adhesion of Mantle Cell Lymphoma Cells to Stromal Cells. Cancers, 2020, 12, 1143.	1.7	7
51	Age-Related Increase of EED Expression in Early Hematopoietic Progenitor Cells is Associated with Global Increase of the Histone Modification H3K27me3. Stem Cells and Development, 2015, 24, 2018-2031.	1.1	6
52	Description and optimization of a multiplex bead-based flow cytometry method (MBFCM) to characterize extracellular vesicles in serum samples from patients with hematological malignancies. Cancer Gene Therapy, 2022, 29, 1600-1615.	2.2	6
53	Aiming to Compare Apples to Apples: Analysis of Extracellular Vesicles and Other Nanosized Particles by Flow Cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 566-568.	1.1	5
54	Depletion of Numb and Numblike in Murine Lung Epithelial Cells Ameliorates Bleomycin-Induced Lung Fibrosis by Inhibiting the β-Catenin Signaling Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 639162.	1.8	5

André Görgens

#	Article	IF	CITATIONS
55	Human multipotent hematopoietic progenitor cell expansion is neither supported in endothelial and endothelial/mesenchymal co-cultures nor in NSG mice. Scientific Reports, 2019, 9, 12914.	1.6	4
56	Extracellular Vesicles. Learning Materials in Biosciences, 2020, , 219-229.	0.2	3
57	Lost in Transplantation? Unexpected shift from multipotent to late lymphomyeloid hematopoietic stem and progenitor cells in patients 1 year after hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2016, 51, 1073-1075.	1.3	2
58	Allogeneic transplantation of peripheral blood stem cell grafts results in a massive decrease of primitive hematopoietic progenitor frequencies in reconstituted bone marrows. Bone Marrow Transplantation, 2020, 55, 100-109.	1.3	1
59	Self-Renewal of Primitive Hematopoietic Cells: A Focus on Asymmetric Cell Division. , 2010, , 51-75.		1
60	Abstract 4714: Vemurafenib reverses immunosuppression by myeloid derived suppressor cells , 2013, , .		1
61	A Single Nucleotide Polymorphism Of Growth Factor Independence 1 (GFI136N) is a Novel Prognostic Marker For The Progression Of Myelodysplastic Syndrome To Acute Myeloid Leukemia. Blood, 2013, 122, 2491-2491.	0.6	1
62	Dissecting the origin of dendritic cell and macrophage subsets in human hematopoiesis. Experimental Hematology, 2017, 53, S76.	0.2	0
63	Gfi1 As a Novel Prognostic Marker and Tumor Suppressor In Acute Myeloid Leukemia. Blood, 2013, 122, 2516-2516.	0.6	О
64	Preclinical Testing Of a Novel Axl-Kinase Inhibitor In Chronic Lymphocytic Leukemia. Blood, 2013, 122, 2879-2879.	0.6	0
65	Gfi1b-A Novel Tumor Suppressor In Acute Myeloid Leukemia. Blood, 2013, 122, 3795-3795.	0.6	Ο
66	Gfi136N As a Novel Marker and Therapeutic Target of MDS and AML. Blood, 2014, 124, 3245-3245.	0.6	0
67	Analysis of extracellular vesicles by flow cytometry – basics, limitations and prospects. Trillium Extracellular Vesicles, 2019, 1, 40-45.	0.1	О