
Zhen-Yu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2011178/publications.pdf Version: 2024-02-01

ΖΗΕΝ-ΥΠ ΜΠ

#	Article	IF	CITATIONS
1	Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors. ACS Nano, 2012, 6, 7092-7102.	14.6	1,572
2	From Bimetallic Metalâ€Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis. Advanced Materials, 2015, 27, 5010-5016.	21.0	1,224
3	Ultralight, Flexible, and Fireâ€Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angewandte Chemie - International Edition, 2013, 52, 2925-2929.	13.8	643
4	Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12, 2870.	12.8	605
5	Nanowire-Directed Templating Synthesis of Metal–Organic Framework Nanofibers and Their Derived Porous Doped Carbon Nanofibers for Enhanced Electrocatalysis. Journal of the American Chemical Society, 2014, 136, 14385-14388.	13.7	584
6	Iron Carbide Nanoparticles Encapsulated in Mesoporous Feâ€Nâ€Doped Carbon Nanofibers for Efficient Electrocatalysis. Angewandte Chemie - International Edition, 2015, 54, 8179-8183.	13.8	544
7	Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers. Environmental Science & Technology, 2016, 50, 4459-4467.	10.0	398
8	Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy, 2015, 11, 366-376.	16.0	395
9	General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nature Chemistry, 2021, 13, 887-894.	13.6	362
10	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nature Catalysis, 2018, 1, 946-951.	34.4	354
11	An Efficient CeO ₂ /CoSe ₂ Nanobelt Composite for Electrochemical Water Oxidation. Small, 2015, 11, 182-188.	10.0	325
12	Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials. Accounts of Chemical Research, 2016, 49, 96-105.	15.6	322
13	Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nature Nanotechnology, 2022, 17, 759-767.	31.5	318
14	Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions. Scientific Reports, 2014, 4, 4079.	3.3	223
15	Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nature Communications, 2021, 12, 4225.	12.8	218
16	SiO ₂ -protected shell mediated templating synthesis of Fe–N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy and Environmental Science, 2018, 11, 2208-2215.	30.8	196
17	Stretchable Conductors Based on Silver Nanowires: Improved Performance through a Binary Network Design. Angewandte Chemie - International Edition, 2013, 52, 1654-1659.	13.8	182
18	Transition metal–assisted carbonization of small organic molecules toward functional carbon materials. Science Advances, 2018, 4, eaat0788.	10.3	172

Zhen-Yu Wu

#	Article	IF	CITATIONS
19	Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach. Journal of Hazardous Materials, 2016, 313, 253-261.	12.4	169
20	Competitive sorption of As(V) and Cr(VI) on carbonaceous nanofibers. Chemical Engineering Journal, 2016, 293, 311-318.	12.7	166
21	Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy, 2019, 55, 226-233.	16.0	163
22	Mo2C nanoparticles embedded within bacterial cellulose-derived 3D N-doped carbon nanofiber networks for efficient hydrogen evolution. NPG Asia Materials, 2016, 8, e288-e288.	7.9	153
23	Macroscopicâ€Scale Threeâ€Dimensional Carbon Nanofiber Architectures for Electrochemical Energy Storage Devices. Advanced Energy Materials, 2017, 7, 1700826.	19.5	152
24	Woodâ€Đerived Ultrathin Carbon Nanofiber Aerogels. Angewandte Chemie - International Edition, 2018, 57, 7085-7090.	13.8	143
25	Iron Carbide Nanoparticles Encapsulated in Mesoporous Feâ€Nâ€Đoped Carbon Nanofibers for Efficient Electrocatalysis. Angewandte Chemie, 2015, 127, 8297-8301.	2.0	142
26	Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting. Nano Energy, 2018, 51, 286-293.	16.0	136
27	Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy, 2016, 19, 117-127.	16.0	115
28	Tailoring Unique Mesopores of Hierarchically Porous Structures for Fast Direct Electrochemistry in Microbial Fuel Cells. Advanced Energy Materials, 2016, 6, 1501535.	19.5	112
29	Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Research, 2014, 7, 1861-1872.	10.4	97
30	Emerging Carbonâ€Nanofiber Aerogels: Chemosynthesis versus Biosynthesis. Angewandte Chemie - International Edition, 2018, 57, 15646-15662.	13.8	92
31	Temperatureâ€Invariant Superelastic and Fatigue Resistant Carbon Nanofiber Aerogels. Advanced Materials, 2020, 32, e1904331.	21.0	92
32	Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nature Catalysis, 2022, 5, 288-299.	34.4	90
33	Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nature Communications, 2022, 13, .	12.8	82
34	Ultralight Multifunctional Carbonâ€Based Aerogels by Combining Graphene Oxide and Bacterial Cellulose. Small, 2017, 13, 1700453.	10.0	79
35	Sustainable Hydrothermal Carbonization Synthesis of Iron/Nitrogenâ€Doped Carbon Nanofiber Aerogels as Electrocatalysts for Oxygen Reduction. Small, 2016, 12, 6398-6406.	10.0	77
36	General and Straightforward Synthetic Route to Phenolic Resin Gels Templated by Chitosan Networks. Chemistry of Materials, 2014, 26, 6915-6918.	6.7	45

Zhen-Yu Wu

#	Article	IF	CITATIONS
37	CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nature Communications, 2022, 13, 2668.	12.8	44
38	Woodâ€Đerived Ultrathin Carbon Nanofiber Aerogels. Angewandte Chemie, 2018, 130, 7203-7208.	2.0	37
39	Greener and higher conversion of esterification via interfacial photothermal catalysis. Nature Sustainability, 2022, 5, 348-356.	23.7	29
40	Recycling Nanowire Templates for Multiplex Templating Synthesis: A Green and Sustainable Strategy. Chemistry - A European Journal, 2015, 21, 4935-4939.	3.3	27
41	Metalâ€Organic Frameworks: From Bimetallic Metalâ€Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis (Adv. Mater. 34/2015). Advanced Materials, 2015, 27, 5009-5009.	21.0	21
42	Switching Co/N/C Catalysts for Heterogeneous Catalysis and Electrocatalysis by Controllable Pyrolysis of Cobalt Porphyrin. IScience, 2019, 15, 282-290.	4.1	20
43	Cobalt–Copper Nanoparticles on Three-Dimensional Substrate for Efficient Ammonia Synthesis via Electrocatalytic Nitrate Reduction. Journal of Physical Chemistry C, 2022, 126, 6982-6989.	3.1	18
44	1D MOFâ€Derived Nâ€Doped Porous Carbon Nanofibers Encapsulated with Fe ₃ C Nanoparticles for Efficient Bifunctional Electrocatalysis. European Journal of Inorganic Chemistry, 2020, 2020, 581-589.	2.0	16
45	Efficient CO ₂ Electroreduction via Auâ€Complex Derived Carbon Nanotube Supported Au Nanoclusters. ChemSusChem, 2021, 14, 4929-4935.	6.8	9
46	Kohlenstoffnanofaserâ€Aerogele: Vergleich von Chemosynthese und Biosynthese. Angewandte Chemie, 2018, 130, 15872-15889.	2.0	8
47	A metal-catalyzed thermal polymerization strategy toward atomically dispersed catalysts. Chemical Communications, 2019, 55, 11579-11582.	4.1	8
48	Natural Nanofibrous Cellulose-Derived Solid Acid Catalysts. Research, 2019, 2019, 6262719.	5.7	8
49	Water Oxidation: An Efficient CeO ₂ /CoSe ₂ Nanobelt Composite for Electrochemical Water Oxidation (Small 2/2015). Small, 2015, 11, 260-260.	10.0	4