Suppasil Maneerat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/20109/publications.pdf

Version: 2024-02-01

35 papers	797 citations	18 h-index	525886 27 g-index
35 all docs	35 docs citations	35 times ranked	889 citing authors

#	Article	IF	Citations
1	Isolation and screening of lactic acid bacteria from Thai traditional fermented fish (Plasom) and production of Plasom from selected strains. Food Control, 2011, 22, 401-407.	2.8	79
2	Glutamate Decarboxylase from Lactic Acid Bacteriaâ€"A Key Enzyme in GABA Synthesis. Microorganisms, 2020, 8, 1923.	1.6	73
3	Utilization of Banana Peel as a Novel Substrate for Biosurfactant Production by Halobacteriaceae archaeon AS65. Applied Biochemistry and Biotechnology, 2014, 173, 624-645.	1.4	51
4	Molasses as a Whole Medium for Biosurfactants Production by Bacillus Strains and Their Application. Applied Biochemistry and Biotechnology, 2011, 165, 315-335.	1.4	46
5	Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18. World Journal of Microbiology and Biotechnology, 2012, 28, 2973-2986.	1.7	37
6	Probiotic lactic acid bacteria from <i>Kungâ€Som</i> : isolation, screening, inhibition of pathogenic bacteria. International Journal of Food Science and Technology, 2010, 45, 594-601.	1.3	33
7	Lactobacillus futsaii CS3, a New GABA-Producing Strain Isolated from Thai Fermented Shrimp (Kung-Som). Indian Journal of Microbiology, 2017, 57, 211-217.	1.5	33
8	Used lubricating oil degradation and biosurfactant production by SC-9 consortia obtained from oil-contaminated soil. Annals of Microbiology, 2012, 62, 1757-1767.	1.1	32
9	Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3. World Journal of Microbiology and Biotechnology, 2014, 30, 865-877.	1.7	32
10	Selection and evaluation of functional characteristics of autochthonous lactic acid bacteria isolated from traditional fermented stinky bean (Sataw-Dong). Annals of Microbiology, 2017, 67, 25-36.	1.1	30
11	Production of biosurfactant from a new and promising strain of Leucobacter komagatae 183. Annals of Microbiology, 2012, 62, 391-402.	1.1	29
12	Application of Biosurfactant from Sphingobacterium spiritivorum AS43 in the Biodegradation of Used Lubricating Oil. Applied Biochemistry and Biotechnology, 2014, 172, 3949-3963.	1.4	28
13	Microbiota dynamics and volatilome profile during stink bean fermentation (Sataw-Dong) with Lactobacillus plantarum KJ03 as a starter culture. Food Microbiology, 2018, 76, 91-102.	2.1	28
14	Functional properties of Lactobacillus plantarum SO/7 isolated fermented stinky bean (Sa Taw Dong) and its use as a starter culture. Journal of Functional Foods, 2017, 38, 370-377.	1.6	27
15	An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand. World Journal of Microbiology and Biotechnology, 2013, 29, 87-102.	1.7	25
16	Mangrove sediment, a new source of potential biosurfactant-producing bacteria. Annals of Microbiology, 2012, 62, 1669-1679.	1.1	24
17	Inhibition of Staphylococcus aureus in vitro by bacteriocinogenic Lactococcus lactis KTHO-1S isolated from Thai fermented shrimp (Kung-som) and safety evaluation. Archives of Microbiology, 2017, 199, 551-562.	1.0	23
18	Enhancement of gamma-aminobutyric acid (GABA) levels using an autochthonous Lactobacillus futsaii CS3 as starter culture in Thai fermented shrimp (Kung-Som). World Journal of Microbiology and Biotechnology, 2017, 33, 152.	1.7	23

#	Article	IF	Citations
19	Production and characterization of biosurfactant from marine bacterium Inquilinus limosus KB3 grown on low-cost raw materials. Annals of Microbiology, 2013, 63, 1327-1339.	1.1	22
20	Reduction of tyramine accumulation in Thai fermented shrimp (kung-som) by nisin Z-producing Lactococcus lactis KTH0-1S as starter culture. Food Control, 2018, 90, 249-258.	2.8	20
21	Tuna condensate as a promising low-cost substrate for glutamic acid and GABA formation using Candida rugosa and Lactobacillus futsaii. Process Biochemistry, 2018, 70, 29-35.	1.8	17
22	Characterization and Phylogenetic Analysis of Microbial Surface Active Compound-Producing Bacteria. Applied Biochemistry and Biotechnology, 2012, 168, 1003-1018.	1.4	16
23	Isolation and characterization of a biosurfactant from Deinococcus caeni PO5 using jackfruit seed powder as a substrate. Annals of Microbiology, 2014, 64, 1007-1020.	1.1	15
24	Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils. Archives of Microbiology, 2017, 199, 839-851.	1.0	13
25	<i>Virgibacillus halodenitrificans</i> MSK-10P, a Potential Protease-producing Starter Culture for Fermented Shrimp Paste (kapi) Production. Journal of Aquatic Food Product Technology, 2019, 28, 877-890.	0.6	7
26	Enhancement of glycolipid production by Stenotrophomonas acidaminiphila TW3 cultivated in low cost substrate. Biocatalysis and Agricultural Biotechnology, 2020, 26, 101628.	1.5	6
27	Thai traditional fermented fish paste <i>Kaâ€piâ€plaa</i> : Chemical compositions and physical properties. Journal of Food Processing and Preservation, 2022, 46, .	0.9	6
28	Using Corn Husk Powder as a Novel Substrate to Produce a Surface Active Compound from <i>Labrenzia aggregate </i> KPâ€5. Journal of Surfactants and Detergents, 2018, 21, 523-539.	1.0	4
29	Production and Application of Biosurfactant Produced by <i>Agrobacterium rubi</i> L5 Isolated from Mangrove Sediments. Applied Mechanics and Materials, 0, 886, 98-104.	0.2	4
30	No distinction in the gut microbiota between diarrhea predominant-irritable bowel syndrome and healthy subjects: matched case–control study in Thailand. Gut Pathogens, 2021, 13, 16.	1.6	4
31	<i>Kaâ€piâ€plaa</i> fermented using beardless barb fish: physicochemical, microbiological and antioxidant properties as influenced by production processes. International Journal of Food Science and Technology, 2022, 57, 1161-1172.	1.3	4
32	Improved Survival of Freeze-Dried Lactobacillus pentosus SY130 and Applied as a Co-culture Starter with Lactobacillus plantarum KJ03 for Fermenting Stink Bean (Sataw-Dong). Indian Journal of Microbiology, 2022, 62, 215-224.	1.5	2
33	Lactic acid bacteria from gamecock and goat originating from Phitsanulok, Thailand: Isolation, identification, technological properties and probiotic potential. Journal of Microbiology and Biotechnology, 2022, 32, 1-10.	0.9	2
34	Autolysis and the endogenous proteinases characterised in beardless barb (<i>Anematichthys) Tj ETQq0 0 0 rgB1</i>	Γ/Qverlocl	k 10 Tf 50 14:
35	Survival and stability of <i>Lactobacillus plantarum</i> <scp>KJ03</scp> as a freezeâ€dried autochthonous starter culture for application in stink bean fermentation (<i>Satawâ€Dong</i>). Journal of Food Processing and Preservation, 2022, 46, .	0.9	1