Shangcong Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2010120/publications.pdf

Version: 2024-02-01

165 165 165 7687 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Possibility for double optimization of siRNA intracellular delivery efficiency and antibacterial activity: Structure screening of pH-sensitive triblock amphiphilic polycation micelles. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112178.	2.5	2
2	A facile strategy to fabricate silver-functionalized superhydrophobic cotton fabrics with long-term antibacterial properties. Cellulose, 2022, 29, 1163-1174.	2.4	5
3	Multifunctional thermo-sensitive hydrogel for modulating the microenvironment in Osteoarthritis by polarizing macrophages and scavenging RONS. Journal of Nanobiotechnology, 2022, 20, 221.	4.2	21
4	A Ternary Synergistic eNOS Gene Delivery System Based on Calcium Ion and L-Arginine for Accelerating Angiogenesis by Maximizing NO Production. International Journal of Nanomedicine, 2022, Volume 17, 1987-2000.	3 . 3	8
5	Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials, 2022, 285, 121538.	5.7	72
6	Polymer-lipid hybrid nanovesicle-enabled combination of immunogenic chemotherapy and RNAi-mediated PD-L1 knockdown elicits antitumor immunity against melanoma. Biomaterials, 2021, 268, 120579.	5.7	46
7	Combating drug-resistant bacterial infection using biodegradable nanoparticles assembled from comb-like polycarbonates grafted with amphiphilic polyquaternium. Journal of Materials Chemistry B, 2021, 9, 357-365.	2.9	11
8	Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chemical Engineering Journal, 2021, 420, 127680.	6.6	84
9	A Facile Strategy for Synergistic Integration of Dynamic Covalent Bonds and Hydrogen Bonds to Surmount the Tradeoff between Mechanical Property and Selfâ€Healing Capacity of Hydrogels. Macromolecular Materials and Engineering, 2021, 306, 2000577.	1.7	17
10	A Facile Strategy to Achieve Synergistic Multiple Hydrogen Bonding Interactions for Constructing Robust Hydrogels with Selfâ€healing Capability, Shape Transformation and Actuation Function. Macromolecular Chemistry and Physics, 2021, 222, 2000429.	1.1	6
11	Nâ€dodecylated chitosan/graphene oxide composite cryogel for hemostasis and antibacterial treatment. Journal of Applied Polymer Science, 2021, 138, 50572.	1.3	9
12	Core Role of Hydrophobic Core of Polymeric Nanomicelle in Endosomal Escape of siRNA. Nano Letters, 2021, 21, 3680-3689.	4.5	58
13	pHâ€Sensitive Polycations for siRNA Delivery: Effect of Asymmetric Structures of Tertiary Amine Groups. Macromolecular Bioscience, 2021, 21, e2100025.	2.1	7
14	Reduction-sensitive polymeric micelles as amplifying oxidative stress vehicles for enhanced antitumor therapy. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111733.	2. 5	19
15	PolyTLR7/8a-conjugated, antigen-trapping gold nanorods elicit anticancer immunity against abscopal tumors by photothermal therapy-induced in situ vaccination. Biomaterials, 2021, 275, 120921.	5.7	40
16	Harnessing pH-Sensitive Polycation Vehicles for the Efficient siRNA Delivery. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 2218-2229.	4.0	25
17	Chemosensitivity enhanced by autophagy inhibition based on a polycationic nano-drug carrier. Nanoscale Advances, 2021, 3, 1656-1673.	2.2	5
18	Healing Effects of Curcumin Nanoparticles in Deep Tissue Injury Mouse Model. Current Drug Delivery, 2021, 18, 1003-1013.	0.8	4

#	Article	IF	CITATIONS
19	Research progress of nanocarriers for gene therapy targeting abnormal glucose and lipid metabolism in tumors. Drug Delivery, 2021, 28, 2329-2347.	2.5	6
20	Layered Double Hydroxide Modified with Deoxycholic and Hyaluronic Acids for Efficient Oral Insulin Absorption. International Journal of Nanomedicine, 2021, Volume 16, 7861-7873.	3.3	8
21	Skin-Adaptable, Long-Lasting Moisture, and Temperature-Tolerant Hydrogel Dressings for Accelerating Burn Wound Healing without Secondary Damage. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59695-59707.	4.0	45
22	Facile Fabrication of Redoxâ€Responsive Covalent Organic Framework Nanocarriers for Efficiently Loading and Delivering Doxorubicin. Macromolecular Rapid Communications, 2020, 41, e1900570.	2.0	64
23	Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials, 2020, 230, 119649.	5.7	102
24	Bioinspired Nanofibrous Glycopeptide Hydrogel Dressing for Accelerating Wound Healing: A Cytokineâ€Free, M2â€Type Macrophage Polarization Approach. Advanced Functional Materials, 2020, 30, 2006454.	7.8	123
25	<p>Overcoming Multiple Absorption Barrier for Insulin Oral Delivery Using Multifunctional Nanoparticles Based on Chitosan Derivatives and Hyaluronic Acid</p> . International Journal of Nanomedicine, 2020, Volume 15, 4877-4898.	3.3	12
26	Screening and Matching Amphiphilic Cationic Polymers for Efficient Antibiosis. Biomacromolecules, 2020, 21, 5269-5281.	2.6	38
27	Tumor Microenvironment-triggered Nanosystems as dual-relief Tumor Hypoxia Immunomodulators for enhanced Phototherapy. Theranostics, 2020, 10, 9132-9152.	4.6	67
28	<p>Mechanism Investigation of Hyaluronidase-Combined Multistage Nanoparticles for Solid Tumor Penetration and Antitumor Effect</p> . International Journal of Nanomedicine, 2020, Volume 15, 6311-6324.	3.3	19
29	The microgravity enhanced polymer-mediated siRNA gene silence by improving cellular uptake. Biophysics Reports, 2020, 6, 266-277.	0.2	6
30	Combâ€Like Amphiphilic Polycarbonates with Different Lengths of Cationic Branches for Enhanced siRNA Delivery. Macromolecular Bioscience, 2020, 20, 2000143.	2.1	4
31	Cascade of reactive oxygen species generation by polyprodrug for combinational photodynamic therapy. Biomaterials, 2020, 255, 120210.	5.7	74
32	Multi-transformable nanocarrier with tumor extracellular acidity-activated charge reversal, size reduction and ligand reemergence for in vitro efficient doxorubicin loading and delivery. Materials Science and Engineering C, 2020, 116, 111250.	3.8	5
33	Novel polymeric micelles as enzyme-sensitive nuclear-targeted dual-functional drug delivery vehicles for enhanced 9-nitro-20(<i>S</i>)-camptothecin delivery and antitumor efficacy. Nanoscale, 2020, 12, 5380-5396.	2.8	43
34	Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. International Journal of Biological Macromolecules, 2020, 155, 153-162.	3.6	32
35	An injectable thermosensitive hydrogel self-supported by nanoparticles of PEGylated amino-modified PCL for enhanced local tumor chemotherapy. Soft Matter, 2020, 16, 5750-5758.	1.2	11
36	Self-Assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Delivery, 2020, 27, 200-215.	2.5	34

#	Article	IF	CITATIONS
37	Rational Design of Nanoparticles to Overcome Poor Tumor Penetration and Hypoxia-Induced Chemotherapy Resistance: Combination of Optimizing Size and Self-Inducing High Level of Reactive Oxygen Species. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31743-31754.	4.0	32
38	Glutathione-Priming Nanoreactors Enable Fluorophore Core/Shell Transition for Precision Cancer Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33667-33675.	4.0	5
39	<p>NIR-guided dendritic nanoplatform for improving antitumor efficacy by combining chemo-phototherapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 4931-4947.	3.3	25
40	Ultraâ€pHâ€Sensitive Biopolymer Micelles Based on Nuclear Base Pairs for Specific Tumorâ€Targeted Drug Delivery. Macromolecular Chemistry and Physics, 2019, 220, 1900309.	1.1	4
41	Layer-by-layer zwitterionic modification of diverse substrates with durable anti-corrosion and anti-fouling properties. Journal of Materials Chemistry B, 2019, 7, 6024-6034.	2.9	25
42	Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery. Journal of Controlled Release, 2019, 297, 60-70.	4.8	106
43	An injectable and tumor-specific responsive hydrogel with tissue-adhesive and nanomedicine-releasing abilities for precise locoregional chemotherapy. Acta Biomaterialia, 2019, 96, 123-136.	4.1	50
44	N-alkylated chitosan/graphene oxide porous sponge for rapid and effective hemostasis in emergency situations. Carbohydrate Polymers, 2019, 219, 405-413.	5.1	83
45	Host-guest supramolecular hydrogel based on nanoparticles: co-delivery of DOX and siBcl-2 for synergistic cancer therapy. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 877-893.	1.9	5
46	An injectable nanocomposite hydrogel co-constructed with gold nanorods and paclitaxel-loaded nanoparticles for local chemo-photothermal synergetic cancer therapy. Journal of Materials Chemistry B, 2019, 7, 2667-2677.	2.9	43
47	<p>Sustained co-delivery of ibuprofen and basic fibroblast growth factor by thermosensitive nanoparticle hydrogel as early local treatment of peri-implantitis</p> . International Journal of Nanomedicine, 2019, Volume 14, 1347-1358.	3.3	19
48	Morphology control and property design of boronate dynamic nanostructures. Polymer Chemistry, 2019, 10, 2436-2446.	1.9	8
49	Intracellular tracking of drug release from pH-sensitive polymeric nanoparticles via FRET for synergistic chemo-photodynamic therapy. Journal of Nanobiotechnology, 2019, 17, 113.	4.2	28
50	Self-assembly and self-delivery nanodrug of bortezomib: a simple approach to achieve the trade-off between functionality and druggability. Journal of Materials Chemistry B, 2019, 7, 7490-7493.	2.9	6
51	Novel dual-functional coating with underwater self-healing and anti-protein-fouling properties by combining two kinds of microcapsules and a zwitterionic copolymer. Progress in Organic Coatings, 2019, 127, 211-221.	1.9	35
52	Modulating the rigidity of nanoparticles for tumor penetration. Chemical Communications, 2018, 54, 3014-3017.	2.2	27
53	Influence of supramolecular layer-crosslinked structure on stability of dual pH-Responsive polymer nanoparticles for doxorubicin delivery. Journal of Drug Delivery Science and Technology, 2018, 45, 81-92.	1.4	8
54	Concentration-directed morphological evolution of boronate ester-based dynamic covalent nanoparticles: a facile approach for size and shape control. Polymer Chemistry, 2018, 9, 815-819.	1.9	4

#	Article	IF	CITATIONS
55	ECM based injectable thermo-sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 152-160.	1.9	39
56	Lipid nanoparticle-based co-delivery of epirubicin and BCL-2 siRNA for enhanced intracellular drug release and reversing multidrug resistance. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 323-332.	1.9	22
57	The study of relationships between pKa value and siRNA delivery efficiency based on tri-block copolymers. Biomaterials, 2018, 176, 84-93.	5.7	44
58	Preparation and evaluation of tumour microenvironment response multistage nanoparticles for epirubicin delivery and deep tumour penetration. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 860-873.	1.9	13
59	In Situ Template Polymerization to Prepare Liposomeâ€Coated PDMAEMA Nanogels with Controlled Size, High Stability, Low Cytotoxicity, and Responsive Drug Release for Intracellular DOX Release. Macromolecular Chemistry and Physics, 2018, 219, 1800071.	1.1	11
60	DOX/ICG Coencapsulated Liposome-Coated Thermosensitive Nanogels for NIR-Triggered Simultaneous Drug Release and Photothermal Effect. ACS Biomaterials Science and Engineering, 2018, 4, 2424-2434.	2.6	83
61	Covalent Organic Frameworks: From Materials Design to Biomedical Application. Nanomaterials, 2018, 8, 15.	1.9	134
62	A Modular Coassembly Approach to All-In-One Multifunctional Nanoplatform for Synergistic Codelivery of Doxorubicin and Curcumin. Nanomaterials, 2018, 8, 167.	1.9	27
63	Liposomesâ€Camouflaged Redoxâ€Responsive Nanogels to Resolve the Dilemma between Extracellular Stability and Intracellular Drug Release. Macromolecular Bioscience, 2018, 18, e1800049.	2.1	18
64	Mechanistic insight into the interaction of gastrointestinal mucus with oral diblock copolymers synthesized via ATRP method. International Journal of Nanomedicine, 2018, Volume 13, 2839-2856.	3.3	10
65	pHâ€Responsive Nanoparticles for Controllable Curcumin Delivery: The Design of Polycation Core with Different Structures. Macromolecular Chemistry and Physics, 2018, 219, 1800062.	1.1	2
66	Tumor Microenvironment Activated Membrane Fusogenic Liposome with Speedy Antibody and Doxorubicin Delivery for Synergistic Treatment of Metastatic Tumors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9315-9326.	4.0	42
67	A reconstituted thermosensitive hydrogel system based on paclitaxel-loaded amphiphilic copolymer nanoparticles and antitumor efficacy. Drug Development and Industrial Pharmacy, 2017, 43, 972-979.	0.9	10
68	Supramolecular hydrogel based on high-solid-content mPECT nanoparticles and cyclodextrins for local and sustained drug delivery. Biomaterials Science, 2017, 5, 698-706.	2.6	21
69	One simple and stable coating of mixedâ€charge copolymers on poly(vinyl chloride) films to improve antifouling efficiency. Journal of Applied Polymer Science, 2017, 134, .	1.3	8
70	A Multitasking Hydrogel Based on Double Dynamic Network with Quadrupleâ€Stimuli Sensitiveness, Autonomic Selfâ€Healing Property, and Biomimetic Adhesion Ability. Macromolecular Chemistry and Physics, 2017, 218, 1700166.	1.1	43
71	Reactive oxygen species activated nanoparticles with tumor acidity internalization for precise anticancer therapy. Journal of Controlled Release, 2017, 255, 142-153.	4.8	29
72	An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery. Acta Biomaterialia, 2017, 64, 334-345.	4.1	97

#	Article	IF	Citations
73	Elaboration on the Distribution of Hydrophobic Segments in the Chains of Amphiphilic Cationic Polymers for Small Interfering RNA Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32463-32474.	4.0	27
74	Thermosensitive Hydrogel Containing Doxycycline Exerts Inhibitory Effects on Abdominal Aortic Aneurysm Induced By Pancreatic Elastase in Mice. Advanced Healthcare Materials, 2017, 6, 1700671.	3.9	6
75	Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice. Biomaterials, 2017, 144, 30-41.	5.7	83
76	The pH-Triggered Triblock Nanocarrier Enabled Highly Efficient siRNA Delivery for Cancer Therapy. Theranostics, 2017, 7, 3432-3445.	4.6	33
77	Supramolecular Hydrogel from Nanoparticles and Cyclodextrins for Local and Sustained Nanoparticle Delivery. Macromolecular Bioscience, 2016, 16, 1188-1199.	2.1	24
78	Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcinomatosis. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104, 251-259.	2.0	35
79	cRGD-Modified Benzimidazole-based pH-Responsive Nanoparticles for Enhanced Tumor Targeted Doxorubicin Delivery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10726-10736.	4.0	21
80	A facile strategy to fabricate covalently linked raspberry-like nanocomposites with pH and thermo tunable structures. RSC Advances, 2016, 6, 40991-41001.	1.7	10
81	One-step gene delivery into the cytoplasm in a fusion-dependent manner based on a new membrane fusogenic lipid. Chemical Communications, 2016, 52, 7406-7408.	2.2	9
82	pH-Sensitive Nanomicelles for High-Efficiency siRNA Delivery in Vitro and in Vivo: An Insight into the Design of Polycations with Robust Cytosolic Release. Nano Letters, 2016, 16, 6916-6923.	4.5	71
83	Self-assembling nanowires of an amphiphilic camptothecin prodrug derived from homologous derivative conjugation. Chemical Communications, 2016, 52, 14145-14148.	2.2	39
84	Using Nucleobase Pairing as Supermolecule Linker to Assemble the Bionic Copolymer Nanoparticles with Small Size. Macromolecular Chemistry and Physics, 2016, 217, 2611-2616.	1.1	11
85	A comparative investigation between paclitaxel nanoparticle- and nanocrystal-loaded thermosensitive PECT hydrogels for peri-tumoural administration. Nanoscale, 2016, 8, 18782-18791.	2.8	22
86	Fabrication of mPEGylated graphene oxide/poly(2â€dimethyl aminoethyl methacrylate) nanohybrids and their primary application for small interfering RNA delivery. Journal of Applied Polymer Science, 2016, 133, .	1.3	15
87	Preparation and evaluation of reduction-responsive nano-micelles for miriplatin delivery. Experimental Biology and Medicine, 2016, 241, 1169-1176.	1.1	6
88	Layered double hydroxide modified by PEGylated hyaluronic acid as a hybrid nanocarrier for targeted drug delivery. Transactions of Tianjin University, 2016, 22, 237-246.	3.3	10
89	Synergistic dual-pH responsive copolymer micelles for pH-dependent drug release. Nanoscale, 2016, 8, 1437-1450.	2.8	45
90	The Promising Nanocarrier for Doxorubicin and siRNA Co-delivery by PDMAEMA-based Amphiphilic Nanomicelles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4347-4356.	4.0	76

#	Article	IF	Citations
91	Zwitterionic nanoparticles constructed from bioreducible RAFT–ROP double head agent for shell shedding triggered intracellular drug delivery. Acta Biomaterialia, 2016, 40, 263-272.	4.1	28
92	Composites of electrospunâ€fibers and hydrogels: A potential solution to current challenges in biological and biomedical field. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 640-656.	1.6	79
93	Synthesis of Nanogels via Cell Membraneâ€∓emplated Polymerization. Small, 2015, 11, 4309-4313.	5.2	63
94	Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterials, 2015, 5, 2054-2130.	1.9	297
95	Amphiphilic Polyelectrolyte/Prodrug Nanoparticles Constructed by Synergetic Electrostatic and Hydrophobic Interactions with Cooperative pH-Sensitivity for Controlled Doxorubicin Delivery. ACS Applied Materials & Delivery. ACS Applied Materials	4.0	43
96	Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery. Biomaterials, 2015, 48, 45-55.	5.7	63
97	pH/redox dual-sensitive nanoparticles based on the PCL/PEG triblock copolymer for enhanced intracellular doxorubicin release. RSC Advances, 2015, 5, 28060-28069.	1.7	19
98	Red electrophoretic particles based on Fe2O3 nanoparticles for electronic inks: Design, preparation and properties. Transactions of Tianjin University, 2015, 21, 244-249.	3.3	2
99	Structural Mediation on Polycation Nanoparticles by Sulfadiazine to Enhance DNA Transfection Efficiency and Reduce Toxicity. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7542-7551.	4.0	18
100	A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 107-117.	2.0	40
101	Influence of 2-(diisopropylamino)ethyl methacrylate on acid-triggered hydrolysis of cyclic benzylidene acetals and their importance in efficient drug delivery. Polymer Chemistry, 2015, 6, 6671-6679.	1.9	13
102	Co-delivery of doxorubicin and 131I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy. Journal of Controlled Release, 2015, 220, 456-464.	4.8	57
103	Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core. Acta Biomaterialia, 2015, 11, 126-136.	4.1	67
104	Thermosensitive in situ hydrogel based on the hybrid of hyaluronic acid and modified PCL/PEG triblock copolymer. Carbohydrate Polymers, 2014, 108, 26-33.	5.1	21
105	Facile access to cytocompatible multicompartment micelles with adjustable Janus-cores from A-block-B-graft-C terpolymers prepared by combination of ROP and ATRP. Colloids and Surfaces B: Biointerfaces, 2014, 115, 302-309.	2.5	15
106	Contribution of hydrophobic/hydrophilic modification on cationic chains of poly($\hat{l}\mu$ -caprolactone)-graft-poly(dimethylamino ethylmethacrylate) amphiphilic co-polymer in gene delivery. Acta Biomaterialia, 2014, 10, 670-679.	4.1	30
107	PEG- <i>b</i>)b-PCL Copolymer Micelles with the Ability of pH-Controlled Negative-to-Positive Charge Reversal for Intracellular Delivery of Doxorubicin. Biomacromolecules, 2014, 15, 4281-4292.	2.6	163
108	Poly(vinyl alcohol) electrospun nanofibrous membrane modified with spirolactam–rhodamine derivatives for visible detection and removal of metal ions. RSC Advances, 2014, 4, 51381-51388.	1.7	21

#	Article	IF	CITATIONS
109	Acid-induced disassemblable nanoparticles based on cyclic benzylidene acetal-functionalized graft copolymer via sequential RAFT and ATRP polymerization. Polymer Chemistry, 2014, 5, 1852.	1.9	17
110	Real-time and non-invasive fluorescence tracking of in vivo degradation of the thermosensitive PEGlyated polyester hydrogel. Journal of Materials Chemistry B, 2014, 2, 4185.	2.9	55
111	Integrin-Targeted Zwitterionic Polymeric Nanoparticles with Acid-Induced Disassembly Property for Enhanced Drug Accumulation and Release in Tumor. Biomacromolecules, 2014, 15, 3128-3138.	2.6	49
112	Sustained release of PTX-incorporated nanoparticles synergized by burst release of DOXâ«HCl from thermosensitive modified PEG/PCL hydrogel to improve anti-tumor efficiency. European Journal of Pharmaceutical Sciences, 2014, 62, 267-273.	1.9	52
113	Zwitterionic Nanoparticles Constructed with Well-Defined Reduction-Responsive Shell and pH-Sensitive Core for "Spatiotemporally Pinpointed―Drug Delivery. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 14631-14643.	4.0	48
114	Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles. Journal of Materials Chemistry B, 2014, 2, 4021-4033.	2.9	64
115	Preparation and characterization of biodegradable poly(sebacic anhydride) chain extended by glycol as drug carrier. Journal of Applied Polymer Science, 2013, 127, 3948-3953.	1.3	19
116	Tumor targeting and pH-responsive polyelectrolyte complex nanoparticles based on hyaluronic acid-paclitaxel conjugates and Chitosan for oral delivery of paclitaxel. Macromolecular Research, 2013, 21, 1331-1337.	1.0	39
117	Surface modification by self-assembled coating with amphiphilic comb-shaped block copolymers: A solution to the trade-off among solubility, adsorption and coating stability. Macromolecular Research, 2013, 21, 1127-1137.	1.0	15
118	Polycation-detachable nanoparticles self-assembled from mPEG-PCL-g-SS-PDMAEMA for in vitro and in vivo siRNA delivery. Acta Biomaterialia, 2013, 9, 7746-7757.	4.1	60
119	Comb-like Amphiphilic Copolymers Bearing Acetal-Functionalized Backbones with the Ability of Acid-Triggered Hydrophobic-to-Hydrophilic Transition as Effective Nanocarriers for Intracellular Release of Curcumin. Biomacromolecules, 2013, 14, 3973-3984.	2.6	59
120	pH-sensitive nanoparticles prepared from amphiphilic and biodegradable methoxy poly(ethylene) Tj ETQq0 0 0 rgB Chemistry, 2013, 4, 1430-1438.	T /Overloo 1.9	ck 10 Tf 50 3 50
121	A reconstituted "two into one―thermosensitive hydrogel system assembled by drug-loaded amphiphilic copolymernanoparticles for the local delivery of paclitaxel. Journal of Materials Chemistry B, 2013, 1, 552-563.	2.9	48
122	Gene transfection efficacy and biocompatibility of polycation/DNA complexes coated with enzyme degradable PEGylated hyaluronic acid. Biomaterials, 2013, 34, 6495-6503.	5.7	72
123	Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo. Nanoscale, 2013, 5, 4291.	2.8	92
124	Preparation and characterization of TiO2/SiO2-cationic hybrid nanoparticles for electrophoretic displays. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	2
125	Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly($\hat{l}\mu$ -caprolactone) and poly(ethylene glycol)co-polymer. Acta Biomaterialia, 2012, 8, 3963-3973.	4.1	76
126	Thermosensitive in situ hydrogel of paclitaxel conjugated poly(ε-caprolactone)-poly(ethylene) Tj ETQq0 0 0 rgBT /	Qverlock	 10 ₉ Tf 50 62 ⁻

#	Article	IF	CITATIONS
127	Controlled thermal gelation of poly(ε-caprolactone)/poly(ethylene glycol) block copolymers by modifying cyclic ether pendant groups on poly(ε-caprolactone). Soft Matter, 2012, 8, 1575-1583.	1.2	57
128	Poly(ethyleneglycol)- <i>b</i> -Poly(Îμ-caprolactone- <i>co</i> -γ-hydroxyl-Îμ- caprolactone) Bearing Pendant Hydroxyl Groups as Nanocarriers for Doxorubicin Delivery. Biomacromolecules, 2012, 13, 3301-3310.	2.6	80
129	Facile and Efficient Synthesis of Fluorescenceâ€Labeled RAFT Agents and Their Application in the Preparation of αâ€ji‰â€•and α,ï‰â€Endâ€Fluorescenceâ€Labeled Polymers. Macromolecular Chemistry and Ph 213, 1851-1862.	yaias, 201	2,15
130	Separation and quantification of dead species in styrene RAFT polymerization by gradient polymer elution chromatography. Polymer Chemistry, 2012, 3, 1314.	1.9	19
131	Self-assembled cationic triblock copolymer mPEG-b-PDLLA-b-PDMA nanoparticles as nonviral gene vector. Soft Matter, 2012, 8, 2252.	1.2	16
132	Facile prepared bis(carbazyl thiocarbonyl) disulfide as chain transfer agent for RAFT polymerization of methyl methacrylate. Journal of Applied Polymer Science, 2012, 126, 740-748.	1.3	7
133	Binary and ternary complexes based on polycaprolactone-graft-poly (N, N-dimethylaminoethyl) Tj ETQq1 1 0.7843	14 rgBT /0 5.7	Overlock 10 48
134	Synthesis of fluorescent methoxy poly(ethylene glycol)â€ <i>b</i> â€Poly(ethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf polymerization. Journal of Applied Polymer Science, 2012, 123, 3575-3579.	50 467 T 1.3	d (cyanoacry 2
135	Preparation and properties of an injectable thermo-sensitive double crosslinking hydrogel based on thiolated chitosan/beta-glycerophosphate. Journal of Materials Science, 2012, 47, 2509-2517.	1.7	21
136	Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery. Biomaterials, 2011, 32, 8730-8742.	5.7	62
137	Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier. Biomaterials, 2011, 32, 879-889.	5.7	97
138	Methoxy poly(ethylene glycol)â€∢i>bà€poly(octadecanoic anhydride)â€∢i>bà€methoxy poly(ethylene) Tj Advanced Technologies, 2011, 22, 669-674.	ETQq0 0 (1.6) rgBT /Over 2
139	Synthesis and properties of Polycaprolactoneâ€ <i>graft</i> epoly(2â€(dimethylamino)ethyl) Tj ETQq1 1 0.7843. Polymers for Advanced Technologies, 2011, 22, 1925-1930.	1.6 1.6	verlock 10 T 11
140	Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials, 2011, 32, 4283-4292.	5.7	79
141	Chitosan/alginate nanoparticles stabilized by poloxamer for the controlled release of 5â€fluorouracil. Journal of Applied Polymer Science, 2010, 117, 2354-2359.	1.3	32
142	Poly(⟨i⟩ε⟨ i⟩â€caprolactone)â€∢i>graft⟨ i⟩â€poly(2â€(dimethylamino)ethyl methacrylate) Amphiphilic Copolymers Prepared via a Combination of ROP and ATRP: Synthesis, Characterization, and Selfâ€Assembly Behavior. Macromolecular Chemistry and Physics, 2010, 211, 1572-1578.	1.1	26
143	Thermosensitive behavior of poly(ethylene glycol)/poly(2â€(<i>N,N</i> â€dimethylamino)ethyl) Tj ETQq1 1 0.7843 Physics, 2010, 48, 503-508.	314 rgBT / 2.4	Overlock 1.0 20
144	Thermoreversible gelation of poly(ethylene glycol)/poly(ester anhydride) triblock copolymer nanoparticles for injectable drug delivery systems. Soft Matter, 2010, 6, 1915.	1.2	18

#	Article	IF	CITATIONS
145	Poly ($\hat{l}\mu$ -caprolactone)-graft-poly (2-(N, N-dimethylamino) ethyl methacrylate) nanoparticles: pH dependent thermo-sensitive multifunctional carriers for gene and drug delivery. Journal of Materials Chemistry, 2010, 20, 6935.	6.7	92
146	Controlled Release of Paclitaxel from Amphiphilic Copolymer Hybrid Assembly Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 2030-2037.	0.9	3
147	Investigation on properties of P((MAA-co-DMAEMA)-g-EG) polyampholyte nanogels. Journal of Nanoparticle Research, 2009, 11, 365-374.	0.8	22
148	Methoxy poly(ethylene glycol)-b-poly(ethyl cyanoacrylate) copolymer nanoparticles as delivery vehicles for dexamethasone. Science Bulletin, 2009, 54, 2918-2924.	1.7	4
149	Methoxy poly(ethylene glycol)â€ <i>block</i> â€poly(<scp>D</scp> , <scp>L</scp> â€lactic acid) copolymer nanoparticles as carriers for transdermal drug delivery. Polymer International, 2008, 57, 268-274.	1.6	16
150	Poly(ethylene glycol)/poly(ethyl cyanoacrylate) amphiphilic triblock copolymer nanoparticles as delivery vehicles for dexamethasone. Journal of Polymer Science Part A, 2008, 46, 7809-7815.	2.5	15
151	Preparation and <i>in vitro</i> release of <i>D,L</i> â€tetrahydropalmatineâ€loaded graft copolymer nanoparticles. Journal of Applied Polymer Science, 2008, 110, 3525-3531.	1.3	6
152	Investigation on the properties of methoxy poly(ethylene glycol)/chitosan graft co-polymers. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1575-1589.	1.9	30
153	Methoxy poly(ethylene glycol)-b-poly(L-lactic acid) copolymer nanoparticles as delivery vehicles for paclitaxel. Journal of Applied Polymer Science, 2005, 98, 2116-2122.	1.3	17
154	Preparation and characterization of poly{[α-maleic anhydride-ï‰-methoxy-poly(ethylene glycol)]-co-(ethyl) Tj ET	Qq0 0 0 rş	gBŢ /Overlock
155	Properties of amphoteric polyurethane waterborne dispersions. Journal of Colloid and Interface Science, 2003, 266, 276-281.	5.0	19
156	Properties of amphoteric polyurethane waterborne dispersions. I. Dependence on pH value in salt-free media. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 972-979.	2.4	9
157	Properties of amphoteric polyurethane waterborne dispersions. III. Isoelectric points and precipitation. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2440-2448.	2.4	12
158	IR spectra studies of core-shell type waterborne polyacrylate-polyurethane microemulsions. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2642-2650.	2.4	28
159	Structure-property relationships of core-shell type waterborne polyacrylate-polyurethane microemulsions. Macromolecular Chemistry and Physics, 1998, 199, 2635-2640.	1.1	13