
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2009933/publications.pdf Version: 2024-02-01

IOHN I CUREDT

#	Article	IF	CITATIONS
1	Variation in the life cycle of monogonont rotifers: Commitment to sex and emergence from diapause. Freshwater Biology, 2020, 65, 786-810.	2.4	20
2	Effect of low temperatures on the reproduction of summer and perennial rotifers from temperate regions: ecological and life cycle implications. Aquatic Ecology, 2020, 54, 711-719.	1.5	2
3	Attachment behavior in the rotifer Brachionus rubens: induction by Asplanchna and effect on sexual reproduction. Hydrobiologia, 2019, 844, 9-20.	2.0	22
4	Divergent developmental patterns of induced morphological defenses in rotifers and <i>Daphnia</i> : Ecological and evolutionary context. Limnology and Oceanography, 2019, 64, 541-557.	3.1	32
5	Morphological Variation and Its Significance in a Polymorphic Rotifer: Environmental, Endogenous, and Genetic Controls. BioScience, 2018, 68, 169-181.	4.9	24
6	Nonâ€genetic polymorphisms in rotifers: environmental and endogenous controls, development, and features for predictable or unpredictable environments. Biological Reviews, 2017, 92, 964-992.	10.4	56
7	Resting-egg hatching and early population development in rotifers: a review and a hypothesis for differences between shallow and deep waters. Hydrobiologia, 2017, 796, 235-243.	2.0	24
8	Spine development in two taxa of Brachionus calyciflorus from Lake Littra, Australia: constitutive and induced defenses against Asplanchna. Journal of Plankton Research, 2017, 39, 962-971.	1.8	8
9	Morphological and behavioral responses of a rotifer to the predator Asplanchna. Journal of Plankton Research, 2014, 36, 1576-1584.	1.8	33
10	The cost of predator-induced morphological defense in rotifers: experimental studies and synthesis. Journal of Plankton Research, 2013, 35, 461-472.	1.8	43
11	Maternal age and spine development in a rotifer: ecological implications and evolution. Ecology, 2013, 94, 2166-2172.	3.2	20
12	Predator-induced defense in rotifers: developmental lags for morph transformations, and effect on population growth. Aquatic Ecology, 2012, 46, 475-486.	1.5	27
13	Effects of an Ostracod (<i>Cypris pubera</i>) on the Rotifer <i>Keratella tropica</i> : Predation and Reduced Spine Development. International Review of Hydrobiology, 2012, 97, 445-453.	0.9	15
14	Induction of different defences by two enemies in the rotifer Keratella tropica: response priority and sensitivity to enemy density. Freshwater Biology, 2011, 56, 926-938.	2.4	31
15	Daphnia–rotifer interactions in Patagonian communities. Hydrobiologia, 2011, 662, 189-195.	2.0	21
16	Temperature, kairomones, and phenotypic plasticity in the rotifer Keratella tropica (Apstein, 1907). Hydrobiologia, 2011, 678, 179-190.	2.0	23
17	Low crowding threshold for induction of sexual reproduction and diapause in a Patagonian rotifer. Freshwater Biology, 2010, 55, 1705-1718.	2.4	15
18	Effect of food concentration on the production and viability of resting eggs of the rotifer <i>Brachionus</i> : implications for the timing of sexual reproduction. Freshwater Biology, 2010, 55, 2437-2446.	2.4	34

#	Article	IF	CITATIONS
19	Maternal age and spine development in the rotifer <i>Brachionus calyciflorus</i> : increase of spine length with birth orders ¹ . Freshwater Biology, 2009, 54, 1054-1065.	2.4	26
20	Predatorâ€specific inducible defenses in the rotifer <i>Keratella tropica</i> . Freshwater Biology, 2009, 54, 1933-1946.	2.4	42
21	Timing of Diapause in Monogonont Rotifers: Mechanisms and Strategies. , 2007, , 11-27.		19
22	Induction of mictic females in the rotifer Brachionus: oocytes of amictic females respond individually to population-density signal only during oogenesis shortly before oviposition. Freshwater Biology, 2007, 52, 1417-1426.	2.4	29
23	Intraclonal variation in propensity for mixis in several rotifers: variation among females and with maternal age. Hydrobiologia, 2007, 593, 121-128.	2.0	34
24	Effect of sunlight intensity and albinism on the covering response of the Caribbean sea urchin Tripneustes ventricosus. Marine Biology, 2005, 146, 1111-1117.	1.5	47
25	Brachionus calyciflorus is a Species Complex: Mating Behavior and Genetic Differentiation Among Four Geographically Isolated Strains. Hydrobiologia, 2005, 546, 257-265.	2.0	90
26	Population density, sexual reproduction and diapause in monogonont rotifers: new data for Brachionus and a review. Journal of Limnology, 2004, 63, 32.	1.1	61
27	Rotifers from diapausing, fertilized eggs: Unique features and emergence. Limnology and Oceanography, 2004, 49, 1341-1354.	3.1	81
28	Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshwater Biology, 2004, 49, 1505-1515.	2.4	41
29	Environmental and endogenous control of sexuality in a rotifer life cycle: developmental and population biology. Evolution & Development, 2003, 5, 19-24.	2.0	90
30	Specificity of crowding response that induces sexuality in the rotifer <i>Brachionus</i> . Limnology and Oceanography, 2003, 48, 1297-1303.	3.1	62
31	Endogenous regulation of environmentally induced sexuality in a rotifer: a multigenerational parental effect induced by fertilisation. Freshwater Biology, 2002, 47, 1633-1641.	2.4	67
32	Observations of insect predation on rotifers. Hydrobiologia, 2001, 446/447, 115-121.	2.0	25
33	Title is missing!. Hydrobiologia, 2001, 446/447, 19-28.	2.0	34
34	Differential sensitivity of Synchaeta and Daphnia to nucleosides from Anabaena affinis. Hydrobiologia, 1998, 387/387, 277-281.	2.0	2
35	ASEXUAL DIAPAUSE INDUCED BY FOOD LIMITATION IN THE ROTIFERSYNCHAETA PECTINATA. Ecology, 1998, 79, 1371-1381.	3.2	33
36	Induction of diapausing amictic eggs in Synchaeta pectinata. Hydrobiologia, 1995, 313-314, 345-350.	2.0	27

#	Article	IF	CITATIONS
37	Structure, development and induction of a new diapause stage in rotifers. Freshwater Biology, 1995, 34, 263-270.	2.4	43
38	The effect of suspended clay on ciliate population growth rates. Freshwater Biology, 1993, 29, 385-394.	2.4	23
39	Variation in Herbivore Response to Chemical Defenses: Zooplankton Foraging on Toxic Cyanobacteria. Ecology, 1992, 73, 2208-2217.	3.2	166
40	Discrimination Between Exploitative and Interference Competition Between Cladocera and Keratella Cochlearis. Ecology, 1991, 72, 924-937.	3.2	75
41	Differential Effects of Anabaena Affinis on Cladocerans and Rotifers: Mechanisms and Implications. Ecology, 1990, 71, 1727-1740.	3.2	124
42	Suspended Clay and the Population Dynamics of Planktonic Rotifers and Cladocerans. Ecology, 1990, 71, 1741-1755.	3.2	246
43	The susceptiblity of Keratella cochlearis to interference from small cladocerans. Freshwater Biology, 1989, 22, 333-339.	2.4	34
44	Susceptibilities of Ten Rotifer Species to Interference From Daphnia Pulux. Ecology, 1988, 69, 1826-1838.	3.2	112
45	Suppression of rotifer populations by <i>Daphnia</i> : A review of the evidence, the mechanisms, and the effects on zooplankton community structure1. Limnology and Oceanography, 1988, 33, 1286-1303.	3.1	323
46	Escape response of the rotifer Keratella: Description, stimulation, fluid dynamics, and ecological significance. Limnology and Oceanography, 1988, 33, 1440-1450.	3.1	25
47	Rotifer Threshold Food Concentrations and the Size-Efficiency Hypothesis. Ecology, 1987, 68, 181-187.	3.2	88
48	Multiple-Species Induction of Morphological Defenses in the Rotifer Keratella Testudo. Ecology, 1987, 68, 370-378.	3.2	88
49	The Polyarthra escape from response: Defense against interference from Daphnia. Hydrobiologia, 1987, 147, 235-238.	2.0	36
50	Direct observations of the mechanisms of interference between Daphnia and Keratella cochlearis 1. Limnology and Oceanography, 1986, 31, 859-866.	3.1	58
51	Gigantism and the potential for interference competition in the rotifer genus Asplanchna. Oecologia, 1986, 70, 549-554.	2.0	18
52	Effects of daphnid size and density on interference between <i>Daphnia</i> and <i>Keratella</i> cochlearis1. Limnology and Oceanography, 1986, 31, 848-858.	3.1	96
53	Escape response of the rotifer Polyarthra: a high-speed cinematographic analysis. Oecologia, 1985, 66, 322-331.	2.0	82
54	Body Size, Food Concentration, and Population Growth in Planktonic Rotifers. Ecology, 1985, 66, 1151-1159.	3.2	259

#	Article	IF	CITATIONS
55	Asplanchna -induced polymorphism in the rotifer Keratella slacki 1. Limnology and Oceanography, 1984, 29, 1309-1316.	3.1	85
56	Body size, ration level, and population growth in Asplanchna. Oecologia, 1984, 64, 355-359.	2.0	32
57	Control of sexuality in Asplanchna brightwelli: threshold levels of dietary tocopherol and modification of tocopherol response by exogenous and endogenous factors. Hydrobiologia, 1983, 104, 167-173.	2.0	11
58	Seasonal patterns of feeding by natural populations of Keratella, Polyarthra, and Bosmina: Clearance rates, selectivities, and contributions to community grazing1. Limnology and Oceanography, 1982, 27, 918-934.	3.1	167
59	The effects of posterolateral spine length and body length on feeding rate in the rotifer, Brachionus calyciflorus. Hydrobiologia, 1982, 89, 263-268.	2.0	17
60	Control of Morphotype Frequency Distributions in Populations of the Rotifer Asplanchna Sieboldi: Factors Influencing the Production of the Tocopherol-Dependent Cruciform and Campanulate Morphotypes. Ecology, 1981, 62, 1299-1310.	3.2	7
61	Female Polymorphism and Sexual Reproduction in the Rotifer Asplanchna: Evolution of Their Relationship and Control by Dietary Tocopherol. American Naturalist, 1980, 116, 409-431.	2.1	80
62	Further observations on developmental polymorphism and its evolution in the rotifer Brachionus calyciflorus. Freshwater Biology, 1980, 10, 281-294.	2.4	67
63	Predator-prey behavior and its effect on rotifer survival in associations of Mesocyclops edax, Asplanchna girodi, Polyarthra vulgaris, and Keratella cochlearis. Oecologia, 1978, 37, 13-22.	2.0	147
64	Selective feeding and its effect on polymorphism and sexuality in the rotifer Asplanchna sieboldi. Freshwater Biology, 1978, 8, 43-50.	2.4	10
65	Sexual reproduction in the rotiferAsplanchna girodi: Effects of tocopherol and population density. The Journal of Experimental Zoology, 1978, 204, 113-121.	1.4	18
66	Fine Structure of the Resting Eggs of the Rotifers Brachionus calyciflorus and Asplanchna sieboldi. Transactions of the American Microscopical Society, 1978, 97, 49.	0.3	57
67	Defenses of Males Against Cannibalism in the Rotifer Asplanchna: Size, Shape, and Failure to Elicit Tactile Feeding Responese. Ecology, 1977, 58, 1128-1135.	3.2	15
68	Control of feeding behaviour and selective cannibalism in the rotifer Asplanchna. Freshwater Biology, 1977, 7, 337-341.	2.4	16
69	Polymorphism and reproductive mode in the rotifer,Asplanchna sieboldi: Relationship between meiotic oogenesis and shape of body-wall outgrowths. The Journal of Experimental Zoology, 1977, 201, 21-27.	1.4	11
70	Polymorphism and polyploidy in the rotiferAsplanchna sieboldi: Relative nuclear DNA contents in tissues of saccate and campanulate females. The Journal of Experimental Zoology, 1977, 201, 163-168.	1.4	19
71	Polymorphism in the Rotifer Asplanchna Sieboldi: Biomass, Growth, and Reproductive Rate of the Saccate and Campanulate Morphotypes. Ecology, 1976, 57, 542-551.	3.2	27
72	Sex reversal in a freshwater sponge. The Journal of Experimental Zoology, 1976, 195, 145-151.	1.4	26

#	Article	IF	CITATIONS
73	Dietary tocopherol and sexual reproduction in the rotifersBrachionus calyciflorus andAsplanchna sieboldi. The Journal of Experimental Zoology, 1975, 194, 485-493.	1.4	10
74	ANALYSIS OF TOCOPHEROL IN RHODOTORULA GLUTINIS, AGARICUS CAMPESTRIS, AND EUGLENA GRACILIS USING SPECTROFLUOROMETRY AND ROTIFER BIOASSAY. Journal of General and Applied Microbiology, 1975, 21, 345-354.	0.7	12
75	Polymorphism in the Rotifer Asplanchna sieboldi. Variability in the Body-Wall-Outgrowth Response to Dietary Tocopherol. Physiological Zoology, 1975, 48, 404-419.	1.5	8
76	Dormancy in Rotifers. Transactions of the American Microscopical Society, 1974, 93, 490.	0.3	257
77	The adaptive significance of polymorphism in the rotifer Asplanchna. Humps in males and females. Oecologia, 1973, 13, 135-146.	2.0	26
78	The Labile Period for α-Tocopherol-induced Mictic Female and Body Wall Outgrowth Responses in Embryos of the Rotifer Asplanchna sieboldi. International Review of Hydrobiology, 1972, 57, 675-683.	0.6	9
79	Sensitivity and Specificity of the Asplanchna Response to Dietary α-Tocopherol. Journal of Nutrition, 1971, 101, 113-126.	2.9	28
80	Dietary Control of Sexuality in the Rotifer Asplanchna brightwelli Gosse. Physiological Zoology, 1968, 41, 14-43.	1.5	65
81	Asplanchna, Asplanchna-Substance, and Posterolateral Spine Length Variation of the Rotifer Brachionus Calyciflorus in a Natural Environment. Ecology, 1967, 48, 1027-1031.	3.2	45
82	Mictic female production in the rotiferBrachionus calyciflorus. The Journal of Experimental Zoology, 1963, 153, 113-123.	1.4	186