
Rishi Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2009715/publications.pdf Version: 2024-02-01

2

#	Article	IF	CITATIONS
1	Optimization of Levulinic Acid Production from Depithed Sugarcane Bagasse in 1- Ethyl-3-methylimidazolium hydrogen sulfate [EMim][HSO4]. Waste and Biomass Valorization, 2021, 12, 3179-3191.	1.8	8
2	Second Generation Bioethanol Production: The State of Art. Biofuel and Biorefinery Technologies, 2019, , 121-146.	0.1	10
3	Cost effective production of complete cellulase system by newly isolated Aspergillus niger RCKH-3 for efficient enzymatic saccharification: Medium engineering by overall evaluation criteria approach (OEC). Biochemical Engineering Journal, 2018, 132, 182-190.	1.8	36
4	Study of charcoal detoxification of acid hydrolysate from corncob and its fermentation to xylitol. Journal of Environmental Chemical Engineering, 2017, 5, 4573-4582.	3.3	39
5	Pilot-scale pretreatments of sugarcane bagasse with steam explosion and mineral acid, organic acid, and mixed acids: synergies, enzymatic hydrolysis efficiencies, and structure-morphology correlations. Biomass Conversion and Biorefinery, 2017, 7, 179-189.	2.9	10
6	Enzymatic Saccharification of Acid/Alkali Pre-treated, Mill-run, and Depithed Sugarcane Bagasse. BioResources, 2016, 11, .	0.5	9
7	Cellulases: Application in Wine and Brewery Industry. , 2016, , 193-200.		6
8	Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresource Technology, 2016, 220, 584-589.	4.8	39
9	Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Bioprocess and Biosystems Engineering, 2016, 39, 1659-1670.	1.7	17
10	Scaleâ€up of abatement of fermentation inhibitors from acid hydrolysates for efficient conversion to ethanol as biofuel. Journal of Chemical Technology and Biotechnology, 2016, 91, 1826-1834.	1.6	4
11	Simultaneous saccharification and fermentation of pretreated sugarcane bagasse to ethanol using a new thermotolerant yeast. Annals of Microbiology, 2015, 65, 423-429.	1.1	11
12	Modulation of xylanase production from alkaliphilic Bacillus pumilus VLK-1 through process optimization and temperature shift operation. 3 Biotech, 2014, 4, 345-356.	1.1	33
13	Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydrate Polymers, 2014, 99, 264-269.	5.1	69
14	Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: A pilot scale study. Bioresource Technology, 2014, 169, 96-102.	4.8	84
15	Sustainable Enzyme Technology for Environment: Biosensors for Monitoring of Pollutants and Toxic Compounds. , 2013, , 69-76.		1
16	Cellulases and Their Biotechnological Applications. , 2013, , 89-106.		17
17	Microbial Pectinases and Their Applications. , 2013, , 107-124.		10

Patenting Trends in Bioremediation Technologies for Oil-Contaminated Sites. , 2013, , 289-313.

Rishi Gupta

#	Article	IF	CITATIONS
19	Biofuels: The Environment-Friendly Energy Carriers. , 2013, , 125-148.		Ο
20	Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresource Technology, 2013, 135, 150-156.	4.8	254
21	Fermentation of pentose and hexose sugars from corncob, a low cost feedstock into ethanol. Biomass and Bioenergy, 2012, 47, 334-341.	2.9	21
22	Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol. Biotechnology for Biofuels, 2012, 5, 16.	6.2	56
23	Enhanced Exoglucanase Production by Brown Rot Fungus Fomitopsis sp. RCK2010 and its Application for Cellulose Saccharification. Applied Biochemistry and Biotechnology, 2012, 168, 2004-2016.	1.4	3
24	Application of lignocellulolytic enzymes produced under solid state cultivation conditions. Bioresource Technology, 2012, 115, 249-254.	4.8	17
25	Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 170-177.	1.8	48
26	Microbial Decolorization of Colored Industrial Effluents. , 2012, , 787-813.		4
27	Bioethanol production from pentose sugars: Current status and future prospects. Renewable and Sustainable Energy Reviews, 2011, 15, 4950-4962.	8.2	171
28	Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 2011, 22, 797-804.	1.5	93
29	Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate Polymers, 2011, 84, 1103-1109.	5.1	134
30	Microbial Cellulases and Their Industrial Applications. Enzyme Research, 2011, 2011, 1-10.	1.8	638
31	Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Bioresource Technology, 2010, 101, 8348-8354.	4.8	167
32	Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass and Bioenergy, 2010, 34, 1189-1194.	2.9	112
33	Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresource Technology, 2009, 100, 1214-1220.	4.8	234