
Scott A Whattam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2009219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Significance of a highly refractory source during subduction initiation to form the Izu-Bonin-Mariana Arc. Science Bulletin, 2022, 67, 119-121.	9.0	5
2	Refractory inclusions as Type IA chondrule precursors: Constraints from melting experiments. Geochimica Et Cosmochimica Acta, 2022, 319, 30-55.	3.9	3
3	Geochemistry of serpentinized and multiphase altered Atlantis Massif peridotites (IODP Expedition) Tj ETQq1 3 594, 120681.	1 0.784314 3.3	rgBT /Overloo 9
4	Magmatic Response to Subduction Initiation, Part II: Boninites and Related Rocks of the Izuâ€Bonin Arc From IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 2021, 22, .	2.5	52
5	Plume-Induced Subduction Initiation: Revisiting Models and Observations. Frontiers in Earth Science, 2021, 9, .	1.8	13
6	Early central American forearc follows the subduction initiation rule. Gondwana Research, 2020, 79, 283-300.	6.0	21
7	Mineral compositions and thermobarometry of basalts and boninites recovered during IODP Expedition 352 to the Bonin forearc. American Mineralogist, 2020, 105, 1490-1507.	1.9	26
8	Reply to â€~Evidence for simple volcanic rifting not complex subduction initiation in the Laxmi Basin'. Nature Communications, 2020, 11, 2734.	12.8	1
9	Relict subduction initiation along a passive margin in the northwest Indian Ocean. Nature Communications, 2019, 10, 2248.	12.8	26
10	Magmatic Response to Subduction Initiation: Part 1. Foreâ€arc Basalts of the Izuâ€Bonin Arc From IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 2019, 20, 314-338.	2.5	113
11	Primitive Magmas in the Early Central American Volcanic Arc System Generated by Plume-Induced Subduction Initiation. Frontiers in Earth Science, 2018, 6, .	1.8	15
12	Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition) Tj ETQqO	0 0 rgBT /O	verlock 10 Tf
13	Subduction initiation and ophiolite crust: new insights from IODP drilling. International Geology Review, 2017, 59, 1439-1450.	2.1	145
14	Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352. Chemical Geology, 2017, 451, 55-66.	3.3	44
15	Evolution of the mantle beneath the eastern North China Craton during the Cenozoic: Linking geochemical and geophysical observations. Journal of Geophysical Research: Solid Earth, 2017, 122, 224-246.	3.4	23
16	Geochemical and mineralogical characteristics of the Yonghwa phoscorite–carbonatite complex, South Korea, and genetic implications. Lithos, 2016, 262, 606-619.	1.4	11
17	Origin of plagiogranites in oceanic complexes: A case study of the Nicoya and Santa Elena terranes, Costa Rica. Lithos, 2016, 262, 75-87.	1.4	23

18Arc magmatic evolution and the construction of continental crust at the Central American Volcanic
Arc system. International Geology Review, 2016, 58, 653-686.2.121

SCOTT A WHATTAM

#	Article	IF	CITATIONS
19	CHEMOSTRATIGRAPHY OF SUBDUCTION INITIATION: IODP EXPEDITION 352 BONINITE AND FAB. , 2016, , .		ο
20	FINE-SCALE SHIPBOARD RESOLUTION AMONG MAFIC IGNEOUS ROCK SEQUENCES RECOVERED DURING OCEAN DRILLING: QUANTITATIVE PXRF DETERMINATION OF KEY ELEMENTS ON ROCK SURFACES AND POWDERS DURING IODP EXPEDITION 352. , 2016, , .		0
21	TWO-STAGE SUBDUCTION INITIATION AROUND THE CARIBBEAN PLUMEHEAD PLATE. , 2016, , .		Ο
22	Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 2015, 527, 221-225.	27.8	310
23	Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 2015, 27, 38-63.	6.0	122
24	To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites. Lithosphere, 2012, 4, 469-483.	1.4	352
25	Age and origin of earliest adakitic-like magmatism in Panama: Implications for the tectonic evolution of the Panamanian magmatic arc system. Lithos, 2012, 142-143, 226-244.	1.4	27
26	Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: Geochemical evidence for supra-subduction zone formation and extensive melt–rock interaction. Lithos, 2011, 127, 599-618.	1.4	36
27	The â€~subduction initiation rule': a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions To Mineralogy and Petrology, 2011, 162, 1031-1045.	3.1	339
28	Arc-continent collisional orogenesis in the SW Pacific and the nature, source and correlation of emplaced ophiolitic nappe components. Lithos, 2009, 113, 88-114.	1.4	59
29	Granoblastic olivine aggregates as precursors of Type I chondrules: An experimental test. Geochimica Et Cosmochimica Acta, 2009, 73, 5460-5482.	3.9	20
30	New SW Pacific tectonic model: Cyclical intraoceanic magmatic arc construction and nearâ€coeval emplacement along the Australiaâ€Pacific margin in the Cenozoic. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	70
31	Granoblastic olivine aggregates in magnesian chondrules: Planetesimal fragments or thermally annealed solar nebula condensates?. Earth and Planetary Science Letters, 2008, 269, 200-211.	4.4	27
32	Link between SSZ ophiolite formation, emplacement and arc inception, Northland, New Zealand: U–Pb SHRIMP constraints; Cenozoic SW Pacific tectonic implications. Earth and Planetary Science Letters, 2006, 250, 606-632.	4.4	45
33	Formation and emplacement of the Northland ophiolite, northern New Zealand: SW Pacific tectonic implications. Journal of the Geological Society, 2005, 162, 225-241.	2.1	35
34	Origin of the Northland Ophiolite, northern New Zealand: Discussion of new data and reassessment of the model. New Zealand Journal of Geology, and Geophysics, 2004, 47, 383-389.	1.8	23