
## Arne Geschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2009054/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | BUILDING EORA: A GLOBAL MULTI-REGION INPUT–OUTPUT DATABASE AT HIGH COUNTRY AND SECTOR<br>RESOLUTION. Economic Systems Research, 2013, 25, 20-49.                             | 1.2  | 991       |
| 2  | International trade drives biodiversity threats in developing nations. Nature, 2012, 486, 109-112.                                                                           | 13.7 | 906       |
| 3  | The carbon footprint of global tourism. Nature Climate Change, 2018, 8, 522-528.                                                                                             | 8.1  | 828       |
| 4  | Mapping the Structure of the World Economy. Environmental Science & Technology, 2012, 46, 8374-8381.                                                                         | 4.6  | 740       |
| 5  | Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions. Journal of Cleaner Production, 2016, 132, 45-56. | 4.6  | 382       |
| 6  | International trade of scarce water. Ecological Economics, 2013, 94, 78-85.                                                                                                  | 2.9  | 363       |
| 7  | Substantial nitrogen pollution embedded in international trade. Nature Geoscience, 2016, 9, 111-115.                                                                         | 5.4  | 288       |
| 8  | International trade undermines national emission reduction targets: New evidence from air pollution. Global Environmental Change, 2014, 24, 52-59.                           | 3.6  | 269       |
| 9  | Global Material Flows and Resource Productivity: Forty Years of Evidence. Journal of Industrial<br>Ecology, 2018, 22, 827-838.                                               | 2.8  | 232       |
| 10 | Global socio-economic losses and environmental gains from the Coronavirus pandemic. PLoS ONE, 2020, 15, e0235654.                                                            | 1.1  | 218       |
| 11 | Frameworks for Comparing Emissions Associated with Production, Consumption, And International Trade. Environmental Science & amp; Technology, 2012, 46, 172-179.             | 4.6  | 189       |
| 12 | Compiling and using input–output frameworks through collaborative virtual laboratories. Science of the Total Environment, 2014, 485-486, 241-251.                            | 3.9  | 151       |
| 13 | Does ecologically unequal exchange occur?. Ecological Economics, 2013, 89, 177-186.                                                                                          | 2.9  | 126       |
| 14 | The Global MRIO Lab – charting the world economy. Economic Systems Research, 2017, 29, 158-186.                                                                              | 1.2  | 74        |
| 15 | Constructing a Time Series of Nested Multiregion Input–Output Tables. International Regional Science<br>Review, 2017, 40, 476-499.                                           | 1.0  | 70        |
| 16 | Assessing carbon footprints of cities under limited information. Journal of Cleaner Production, 2018, 176, 1254-1270.                                                        | 4.6  | 70        |
| 17 | Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nature Sustainability, 2022, 5, 157-166.                             | 11.5 | 69        |
| 18 | The carbon footprint of desalination. Desalination, 2019, 454, 71-81.                                                                                                        | 4.0  | 61        |

Arne Geschke

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A metric for spatially explicit contributions to science-based species targets. Nature Ecology and Evolution, 2021, 5, 836-844.                                                                                                             | 3.4 | 61        |
| 20 | New multi-regional input–output databases for Australia – enabling timely and flexible regional<br>analysis. Economic Systems Research, 2017, 29, 275-295.                                                                                  | 1.2 | 59        |
| 21 | Global consumption and international trade in deforestation-associated commodities could influence malaria risk. Nature Communications, 2020, 11, 1258.                                                                                     | 5.8 | 50        |
| 22 | Global Supply Chains of Coltan. Journal of Industrial Ecology, 2015, 19, 357-365.                                                                                                                                                           | 2.8 | 46        |
| 23 | Triple bottom line study of a lignocellulosic biofuel industry. GCB Bioenergy, 2016, 8, 96-110.                                                                                                                                             | 2.5 | 43        |
| 24 | Economic damage and spillovers from a tropical cyclone. Natural Hazards and Earth System Sciences, 2019, 19, 137-151.                                                                                                                       | 1.5 | 42        |
| 25 | Virtual laboratories and MRIO analysis – an introduction. Economic Systems Research, 2017, 29, 143-157.                                                                                                                                     | 1.2 | 36        |
| 26 | INVESTIGATING ALTERNATIVE APPROACHES TO HARMONISE MULTI-REGIONAL INPUT–OUTPUT DATA.<br>Economic Systems Research, 2014, 26, 354-385.                                                                                                        | 1.2 | 32        |
| 27 | Estimating industrial solid waste and municipal solid waste data at high resolution using economic<br>accounts: an input–output approach with Australian case study. Journal of Material Cycles and Waste<br>Management, 2016, 18, 677-686. | 1.6 | 31        |
| 28 | A practical approach for estimating weights of interacting criteria from profile sets. Fuzzy Sets and Systems, 2015, 272, 70-88.                                                                                                            | 1.6 | 29        |
| 29 | A flexible multiregional input–output database for city-level sustainability footprint analysis in Japan.<br>Resources, Conservation and Recycling, 2020, 154, 104588.                                                                      | 5.3 | 25        |
| 30 | Consuming Childhoods: An Assessment of Child Labor's Role in Indian Production and Global<br>Consumption. Journal of Industrial Ecology, 2016, 20, 611-622.                                                                                 | 2.8 | 23        |
| 31 | The Australian industrial ecology virtual laboratory and multi-scale assessment of buildings and construction. Energy and Buildings, 2018, 164, 14-20.                                                                                      | 3.1 | 19        |
| 32 | Supply-side carbon accounting and mitigation analysis for Beijing-Tianjin-Hebei urban agglomeration in<br>China. Journal of Environmental Management, 2019, 248, 109243.                                                                    | 3.8 | 18        |
| 33 | Thailand's energy-related carbon dioxide emissions from production-based and consumption-based perspectives. Energy Policy, 2019, 133, 110877.                                                                                              | 4.2 | 18        |
| 34 | Responsibility for food loss from a regional supply-chain perspective. Resources, Conservation and Recycling, 2019, 146, 373-383.                                                                                                           | 5.3 | 18        |
| 35 | A NON-SIGN-PRESERVING RAS VARIANT. Economic Systems Research, 2014, 26, 197-208.                                                                                                                                                            | 1.2 | 17        |
| 36 | Consequences of long-term infrastructure decisions—the case of self-healing roads and their<br>CO <sub>2</sub> emissions. Environmental Research Letters, 2019, 14, 114040.                                                                 | 2.2 | 17        |

Arne Geschke

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A CYCLING METHOD FOR CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES FROM INCOMPLETE DATA.<br>Economic Systems Research, 2012, 24, 413-432.                                         | 1.2 | 16        |
| 38 | A flexible adaptation of the WIOD database in a virtual laboratory. Economic Systems Research, 2017, 29, 187-208.                                                               | 1.2 | 16        |
| 39 | Structural Change and the Environment. Journal of Industrial Ecology, 2012, 16, 623-635.                                                                                        | 2.8 | 14        |
| 40 | Using virtual laboratories for disaster analysis – a case study of Taiwan. Economic Systems Research,<br>2020, 32, 58-83.                                                       | 1.2 | 14        |
| 41 | Environmental impacts of Australia's largest health system. Resources, Conservation and Recycling, 2021, 169, 105556.                                                           | 5.3 | 14        |
| 42 | Creating multiâ€scale nested MRIO tables for linking localized impacts to global consumption drivers.<br>Journal of Industrial Ecology, 2022, 26, 281-293.                      | 2.8 | 9         |
| 43 | Quantifying and categorising national extinction-risk footprints. Scientific Reports, 2022, 12, 5861.                                                                           | 1.6 | 9         |
| 44 | Balancing and reconciling large multi-regional input–output databases using parallel optimisation<br>and high-performance computing. Journal of Economic Structures, 2019, 8, . | 0.6 | 7         |
| 45 | The PIOLab: Building global physical input–output tables in a virtual laboratory. Journal of Industrial<br>Ecology, 2022, 26, 683-703.                                          | 2.8 | 7         |
| 46 | The Virtual IELab – an exercise in replicating part of the EXIOBASE V.2 production pipeline in a virtual laboratory. Economic Systems Research, 2017, 29, 209-233.              | 1.2 | 6         |
| 47 | Sustainable development opportunities in small island nations: A case study of the Cook Islands.<br>Journal of Cleaner Production, 2020, 277, 123045.                           | 4.6 | 6         |
| 48 | Social Impacts of International Trade on the Chinese Transport Sector. Journal of Industrial Ecology, 2016, 20, 603-610.                                                        | 2.8 | 4         |
| 49 | Quantifying carbon flows in Switzerland: top-down meets bottom-up modelling. Environmental<br>Research Letters, 2021, 16, 014018.                                               | 2.2 | 4         |
| 50 | Response to Hornborg et al Ecological Economics, 2015, 119, 419.                                                                                                                | 2.9 | 3         |
| 51 | Carbon footprint and voting preferences of a council. Resources, Conservation and Recycling, 2022, 186, 106535.                                                                 | 5.3 | 1         |
| 52 | The Eora MRIO. Journal of Life Cycle Assessment Japan, 2013, 9, 97-100.                                                                                                         | 0.0 | 0         |