
Ramadan Awad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2008973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of the Effect of Different Nano-Size of WO3 on the Structural and Mechanical Properties of HDPE. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1506-1519.	1.9	13
2	Mixed magnetic behavior in gadolinium and ruthenium co-doped nickel oxide nanoparticles. Physica Scripta, 2022, 97, 015802.	1.2	7
3	Evaluation of the Effect of Different Nano-Size of WO3 Addition on the Thermal Properties of HDPE Composite. International Journal of Thermophysics, 2022, 43, 1.	1.0	4
4	Structure and magnetic investigation of hard/soft Ba0.5Sr0.5Fe12O19/x(Ni0.5Zn0.5)Fe2O4 nanocomposite. Journal of Alloys and Compounds, 2022, 907, 164501.	2.8	7
5	Enhancement of the magnetic and optical properties of Ni0.5Zn0.5Fe2O4 nanoparticles by ruthenium doping. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	9
6	Investigation of the structural and electrical properties of CdO/(Bi, Pb)â^2212 superconducting phase. Physica Scripta, 2022, 97, 065801.	1.2	8
7	Dielectric, impedance and conductivity properties of pristine and (Gd, Ru)-dual doped NiO nanoparticles. Journal of Alloys and Compounds, 2022, 910, 164952.	2.8	7
8	The effect of ruthenium substitution on the opticalÂand magnetic properties of zinc ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2022, 33, 14281-14294.	1.1	5
9	Tailoring the Physical Properties of (Bi, Pb)-2212 Superconductor by the Addition of Cd0.95Mn0.05O Nanoparticles. Journal of Low Temperature Physics, 2022, 208, 271-288.	0.6	5
10	Structural and electrical investigations of novel CdFeO/(Bi,Pb)-2212 superconductor composite. Phase Transitions, 2022, 95, 651-666.	0.6	3
11	Comparative study on the effect of adding two transition-metal-substituted polyoxometalates on the mechanical properties of the (Bi,Pb)-2223 superconducting phase. Journal of Physics and Chemistry of Solids, 2021, 151, 109807.	1.9	7
12	Studies on coatings containing nanoâ€zinc oxide for steel protection. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 859-867.	0.8	4
13	Investigation of Thermal and Mechanical Behavior of HDPE/ZnFe2O4 Composite. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2757-2765.	1.9	11
14	Synthesis and characterization of ZnFe2O4/ Mn2O3 nanocomposites. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	24
15	Effects of neodymium substitution on the structural, optical, and magnetic properties of yttrium iron garnet nanoparticles. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	8
16	Sm and Er partial alternatives of Co in Co3O4 nanoparticles: Probing the physical properties. Physica B: Condensed Matter, 2021, 608, 412898.	1.3	23
17	Structural and magnetic properties of hard-soft BaFe ₁₂ O ₁₉ /(Zn _{0.5} Co _{0.5})Fe ₂ O ₄ ferrites. Journal of Physics Condensed Matter, 2021, 33, 235803.	0.7	5
18	Investigating the role of diamagnetic Cd2+ ions on the structural, optical, and magnetic properties of YIG. Physica Scripta, 2021, 96, 085803.	1.2	0

#	Article	IF	CITATIONS
19	Characterization of CdO nanoparticles prepared by co-precipitation method under different pH and calcination temperatures. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	13
20	Synthesis and identification of structural, optical, electrical, and magnetic properties of novel ZnFe ₂ O ₄ /NiO nanocomposites. Physica Scripta, 2021, 96, 105802.	1.2	11
21	Exchange spring behaviour in BaFe12O19/CoFe2O4 magnetic nanocomposites. Journal of Alloys and Compounds, 2021, 868, 159072.	2.8	15
22	Comparative study of structural and superconducting properties of (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ phase substituted by copper fluoride and thallium fluoride. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	7
23	Tuning the structural, optical and magnetic properties of PVP-capped NiO nanoparticles by gadolinium doping. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	8
24	Effects of different nano size and bulk WO3 enriched by HDPE composites on attenuation of the X-ray narrow spectrum. Nuclear Technology and Radiation Protection, 2021, 36, 315-328.	0.3	8
25	Effect of Er ³⁺ and Pr ³⁺ on the structural, magnetic and dielectric properties of Zn-Co ferrite synthesised via co-precipitation method. Materials Research Innovations, 2020, 24, 104-112.	1.0	15
26	Influence of Lead Fluoride Substitution on the Physical Properties of (\$\$ {ext{Cu}}_{0.5}) Tj ETQq0 0 0 rgBT /C)verlock 10) Tf 50 462 Tc 10
27	Electrical and mechanical properties of Mn2O3 nanoparticles / SmBa2Cu3O7-δ composite. Materials Research Innovations, 2020, 24, 363-372.	1.0	2
28	Structural and electrical investigations of pure and rare earth (Er and Pr)-doped NiO nanoparticles. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	17
29	Structural analysis and dielectric investigations of pure and rare earth elements (Y and Gd) doped NiO nanoparticles. Journal of Alloys and Compounds, 2020, 820, 153381.	2.8	50
30	Study of the Structural and Physical Properties of Co3O4 Nanoparticles Synthesized by Co-Precipitation Method. Journal of Superconductivity and Novel Magnetism, 2020, 33, 1395-1404.	0.8	31
31	Synthesis, characterization and magnetic properties of Y3â^'xSmxFe5O12. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	7
32	Physical and dielectric properties of (Bi,Pb)-2223 superconducting samples added with BaFe12O19 nanoparticles. Chemical Physics Letters, 2020, 757, 137880.	1.2	5
33	Magneto-optical effect of (Sm, Co) co-doping in ZnO semiconductor. Physica B: Condensed Matter, 2020, 598, 412444.	1.3	12
34	Investigation of the physical properties of (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ impregnated with mono cobalt(II)-substituted Undecatungstosilicate Nanoparticles. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	3
35	Investigations of arsenic substitution on the physical, electrical and magnetic properties of Bi-2212 superconductors. Phase Transitions, 2020, 93, 1055-1066.	0.6	6
36	Effect of calcination temperature and cobalt addition on structural, optical and magnetic properties of barium hexaferrite BaFe12O19 nanoparticles. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	34

#	Article	IF	CITATIONS
37	Effect of molybdenum doping on the structural and magnetic properties of MnFe2O4 magnetic nanoparticles. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	9
38	Effect of pelletization pressure on the physical and mechanical properties of (Bi, Pb)-2223 superconductors. Physica Scripta, 2020, 95, 065702.	1.2	6
39	The investigation of mechanical and dielectric properties of Samarium doped ZnO nanoparticles. Materials Research Express, 2020, 7, 025016.	0.8	17
40	Thermo-mechanical properties of high density polyethylene with zinc oxide as a filler. Iranian Polymer Journal (English Edition), 2020, 29, 309-320.	1.3	35
41	Effects of Adding Transition Metal-Substituted Polyoxotungstates on the Frequency and Temperature-Dependent Dielectric Properties of (Bi1.8Pb0.4)Sr2Ca2Cu3O10+l̂´Superconducting Phase. Journal of Low Temperature Physics, 2020, 200, 62-75.	0.6	2
42	Structural, optical and magnetic properties of pure and rare earth-doped NiO nanoparticles. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	33
43	Optoelectronic investigations of needle-shaped Zn _{1-x} Sn _x O nanoparticles synthesized by coprecipitation method. Physica Scripta, 2020, 95, 105804.	1.2	11
44	Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chemical Physics, 2019, 516, 116-124.	0.9	79
45	Physical Properties of Mn2O3 Nanoparticles Synthesized by Co-precipitation Method at Different pH Values. Journal of Superconductivity and Novel Magnetism, 2019, 32, 885-892.	0.8	44
46	Comparative studies for the physical properties of superconducting (BaSnO ₃) _x (Bi,Pb)-2223 samples determined from excess conductivity and thermoelectric power analysis. Materials Research Express, 2019, 6, 096001.	0.8	10
47	Synthesis, characterization and electrical properties of hybrid mono-iron-substituted undecatungstosilicate/(Bi,Pb)-2223 phase superconductors. Materials Research Express, 2019, 6, 116001.	0.8	8
48	Improving the dielectric behavior of NiO nanoparticles by Samarium doping for electromagnetic applications. Materials Research Express, 2019, 6, 115094.	0.8	11
49	Influence of lead fluoride on the mechanical properties of (\$\$ext{Cu}_{0.5} ext{Tl}_{0.5}\$): 1223 Phase. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	4
50	Improvement of the Superconducting Properties of GdBa2Cu3O7-δ with Nano-Sized Ferrite Addition. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3065-3069.	0.8	0
51	Characterization of Zinc Ferrite Nanoparticles Capped with Different PVP Concentrations. Journal of Electronic Materials, 2019, 48, 4925-4933.	1.0	25
52	AC Magnetic Susceptibility of Y3Ba5Cu8O18 Substituted by Nd3+ and Ca2+ Ions. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3483-3494.	0.8	6
53	Vickers microhardness and indentation creep studies for erbium-doped ZnO nanoparticles. SN Applied Sciences, 2019, 1, 1.	1.5	11
54	A comparative study on the influence of the addition of different nano-oxide particles on the thermopower of (Bi,Pb)-2223 superconductor. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	8

#	Article	IF	CITATIONS
55	Unusual magnetic behavior of nanosized ZnO doped with Mo ⁶⁺ . Materials Research Express, 2019, 6, 075001.	0.8	11
56	Vickers Microhardness Studies for SmBa2Cu3O7-δ Added with NiO Nanosized Particles. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3037-3046.	0.8	3
57	Electrochemical Behavior of Composite Nanoparticles on the Corrosion of Mild Steel in Different Media. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	1.2	18
58	Excess Conductivity and Magnetoconductivity Analysis of (NiO)x (Bi,Pb)-2223 Superconducting Phase. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2733-2737.	0.8	7
59	Synthesis, characterization, and magnetic properties of nanosizedZn0:5Co0:5ErxFe2. Turkish Journal of Physics, 2019, 43, 80-92.	O.5	3
60	Preparation and physical properties of (Bi1.8Pb0.4)Sr2Ca2Cu3O10+l̂´ superconductors impregnated with mangano(II)undecatungstosilicate nanomaterials. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	6
61	Study of some Î ³ -ray attenuation parameters for new shielding materials composed of nano ZnO blended with high density polyethylene. Nuclear Technology and Radiation Protection, 2019, 34, 342-352.	0.3	33
62	Effect of BaFe12O19 Nanoparticles Addition on (Bi,Pb)-2223 Superconducting Phase. Modern Applied Science, 2019, 13, 61.	0.4	6
63	Preparation, Characterization, and Application of Nickel Oxide Nanoparticles in Glucose and Lactose Biosensors. Modern Applied Science, 2019, 13, 99.	0.4	20
64	Synthesis and Characterization of Er-Doped Nano ZnO Samples. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3051-3061.	0.8	31
65	Influence of nitrogen immersion on the mechanical properties of (NiO)x(Bi1.6 Pb0.4)Sr2Ca2Cu3O10-δ composite. Physica B: Condensed Matter, 2018, 536, 803-809.	1.3	4
66	Electronic structure of the iron-based superconductor (La,Eu)FeAsO1-xFx investigated by laser photoemission spectroscopy. Physica B: Condensed Matter, 2018, 536, 781-784.	1.3	1
67	Influence of nitrogen immersion and NiO nanoparticles on the electrochemical behavior of (Bi,) Tj ETQq1 1 0.78 430-435.	4314 rgBT 0.6	Verlock 1 9
68	Structural, Morphological, Optical, and Room Temperature Magnetic Characterization on Pure and Sm-Doped ZnO Nanoparticles. Journal of Nanomaterials, 2018, 2018, 1-11.	1.5	45
69	Corrosion Behavior of a Superconductor with Different SnO ₂ Nanoparticles in Simulated Seawater Solution. Chemical Engineering Communications, 2017, 204, 348-355.	1.5	13
70	Synthesis, Characterization, Optical Properties, and Electron Paramagnetic Resonance for Nano Zn 0 . 5 Co 0 . 5 Fe 2 â^' x Pr x O 4. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3603-3609.	0.8	10
71	The effect of PVP on morphology, optical properties and electron paramagnetic resonance of Zn _{0.5} Co _{0.5} Fe _{2-x} Pr _x O ₄ nanoparticles. Journal of Physics: Conference Series, 2017, 869, 012045.	0.3	6
72	Physical Properties of \$\$(hbox {BaSnO}_{3})_mathrm{x}/hbox {Cu}_{0.5}hbox {Tl}_{0.5}hbox		

#	Article	IF	CITATIONS
73	Thermoelectric power of (Cu0.5Tl0.5)-1223 superconducting phase added with BaSnO3 nanoparticles. Journal of Physics: Conference Series, 2017, 869, 012017.	0.3	2
74	The investigation of the mechanical properties of Mn doped BaSnO ₃ nanoparticles. Journal of Physics: Conference Series, 2017, 869, 012029.	0.3	2
75	Physical properties of ZnO nanoparticles doped with Mn and Fe. Journal of Physics: Conference Series, 2017, 869, 012021.	0.3	6
76	Investigation of physical and mechanical properties of (BaSnO3)x(Bi,Pb)-2223 composite. Journal of Physics: Conference Series, 2017, 869, 012030.	0.3	6
77	Effect of single and multi-wall carbon nanotubes on the mechanical properties of Gd-123 superconducting phase. Chemical Physics Letters, 2017, 686, 34-43.	1.2	10
78	Dielectric properties of (SWCNTs)x GdBa ₂ CuO7â^ʾδ superconductor nanocomposites. Modern Physics Letters B, 2017, 31, 1750290.	1.0	2
79	Mechanical properties of the (BaSnO3)x/Cu0.5Tl0.5Ba2Ca2Cu3O10â^îÎ superconductor phase. Physica Scripta, 2017, 92, 104002.	1.2	12
80	Thermopower of NiO/(Bi, Pb)-2223 composite. Journal of Physics: Conference Series, 2017, 869, 012026.	0.3	3
81	EPR studies of SmBa ₂ Cu ₃ O _{7-δ} /MnFe ₂ O ₄ superconducting composites. Journal of Physics: Conference Series, 2017, 869, 012033.	0.3	2
82	Characterization and Magnetic Properties of Nanoferrite ZnFe2â^'x La x O 4 Prepared by Co-Precipitation Method. Journal of Superconductivity and Novel Magnetism, 2017, 30, 893-902.	0.8	14
83	Investigation of the Mechanical Properties of GdBa2Cu3O7â^îŕ Added with Nanosized Ferrites ZnFe2O4 and CoFe2O4 Using Ultrasonic Measurement. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3595-3602.	0.8	10
84	Superconducting and Mechanical Properties of the Bulk (SnO2) x (Bi1.6Pb0.4)Sr2Ca2Cu3O10â~´Î´ Prepared at Different Sintering Times. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1971-1980.	0.8	13
85	Ac Magnetic Susceptibility and EPR Studies of (Co0.5Zn0.5Fe2O4) x /(Cu0.5Tl0.5)-1223 Composites. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1673-1680.	0.8	0
86	Effect of Ball-Milling Time on the Characterization and Physical Properties of Sintering YBa2Cu3O7â~δ Phase. Journal of Superconductivity and Novel Magnetism, 2017, 30, 2315-2321.	0.8	1
87	EPR Studies for GdBa2Cu3 O 7â^î^ Added with Nanosized Ferrite ZnFe2 O 4 Before and After Irradiation by 3 MeV H + Ions. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3315-3320.	0.8	3
88	Mechanical properties of the iron-based superconductor SmFeAsO1-xFx. Journal of Physics: Conference Series, 2017, 869, 012042.	0.3	1
89	Synthesis, Characterization, and Magnetic Properties of Pure and EDTA-Capped NiO Nanosized Particles. Journal of Nanomaterials, 2017, 2017, 1-9.	1.5	59
90	EPR studies for GdBa2Cu3O7-δadded with nanosized ferrite CoFe2O4. Journal of Physics: Conference Series, 2017, 869, 012024.	0.3	0

#	Article	IF	CITATIONS
91	Role of improving the physical properties of Sm-123 phase by adding nano-magnetic MnFe2O4. Journal of Magnetism and Magnetic Materials, 2016, 419, 354-362.	1.0	5
92	Comparative studies between the influence of single- and multi-walled carbon nanotubes addition on Gd-123 superconducting phase. Modern Physics Letters B, 2016, 30, 1650418.	1.0	5
93	Electrical and mechanical properties of (Bi,Pb)-2223 substituted by holmium. Journal of Advanced Ceramics, 2016, 5, 54-69.	8.9	31
94	Synthesis and Physical Property Characterization for (Co0.5Zn0.5Fe2 O 4) x /Cu0.5Tl0.5-1223 Composites. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1703-1712.	0.8	3
95	Superconductivity and mechanical properties of SmBa2Cu3O7â^î´added with nano-crystalline ZnFe2O4. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	9
96	Excess conductivity analysis for Y3â^'xNdxBa5â^'xCaxCu8O18â^'δ superconducting phase. International Journal of Modern Physics B, 2016, 30, 1650115.	1.0	5
97	Superconducting parameter determination for (Co0.5Zn0.5Fe2O4) x /Cu0.5Tl0.5-1223 composite. Journal of Advanced Ceramics, 2016, 5, 210-218.	8.9	6
98	The effect of nanosized CoFe2O4 addition on the magnetic properties of GdBa2Cu3O7-δusing AC magnetic susceptibility measurements. Journal of Advanced Ceramics, 2016, 5, 93-101.	8.9	4
99	Structural, Optical and Room Temperature Magnetic Study of Mn-Doped ZnO Nanoparticles. Nano, 2016, 11, 1650042.	0.5	14
100	Stoichiometry Analysis and Normal-State Properties of SmBa2Cu3â^'x Ru x O7â^'δ Superconducting Phase. Journal of Superconductivity and Novel Magnetism, 2016, 29, 289-300.	0.8	2
101	Study of the Irreversibility Line of GdBa 2Cu 3 O 7 â ^{~,} δ Added with Nanosized Ferrite CoFe 2 O 4. Journal of Superconductivity and Novel Magnetism, 2016, 29, 179-185.	0.8	6
102	Investigation of Temperature Dependence of the Irreversibility Line of GdBa 2 Cu 3 O7â^`î^ Added with Nanosized Ferrite ZnFe 2 O 4. Journal of Superconductivity and Novel Magnetism, 2015, 28, 535-539.	0.8	10
103	Mechanical properties of Y3â^'xNdxBa5â^'xCaxCu8O18â^'δ samples. Journal of Alloys and Compounds, 2015, 652, 158-166.	2.8	19
104	Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule. Journal of Chemical Physics, 2015, 142, 114312.	1.2	9
105	Determination of Stoichiometry and Superconducting Properties of Y3â^'xNdxBa5â^'xCaxCu8O18â^'î Samples. Journal of Superconductivity and Novel Magnetism, 2015, 28, 453-458. Ion Beam Analysis and Electric Properties of	0.8	8
106	GdBa ₂ Cu ₃ O <s Added with Nanosized Ferrites ZnFe₂O₄ and CoFe₂O₄. Materials</s 	UB&ş 0.3	gt;7-Î< 3
107	Sciences and Applications, 2015, 06, 828-840. Investigation on superconducting properties of GdBa2Cu3O7â^î^ added with nanosized ZnFe2O4. Journal of Alloys and Compounds, 2014, 610, 614-622.	2.8	35
108	Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi,Pb)-2223 Phase. Journal of Superconductivity and Novel Magnetism, 2014, 27, 143-153.	0.8	27

#	Article	IF	CITATIONS
109	Excess Conductivity Analysis of Bi1.8Pb0.4Sr2Ca2Cu3O10+l̃ Added with Nano-ZnO and Nano-Fe2O3. Journal of Low Temperature Physics, 2014, 174, 45-63.	0.6	19
110	Improvement of Superconducting Parameters of Bi1.8Pb0.4Sr2Ca2Cu3O10+δ Added with Nano-Ag. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1131-1142.	0.8	32
111	Physical and Mechanical Properties of GdBa2Cu3O7â [~] Î [^] Added with Nanosized CoFe2O4. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1757-1767.	0.8	12
112	Magnetoresistance Study of Y3Ba5Cu8O18 Superconducting Phase Substituted by Nd3+ and Ca2+ Ions. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2385-2395.	0.8	11
113	Mechanical and Electrical Properties of (Cu0.5Tl0.5)-1223 Phase Added with Nano-Fe2O3. Journal of Low Temperature Physics, 2013, 172, 234-255.	0.6	39
114	Influence of Nano-Ag Addition on the Mechanical Properties of (Cu0.5Tl0.5)-1223 Superconducting Phase. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3235-3245.	0.8	15
115	Magneto-conductivity Analysis for GdBa2Cu3O7â^î ́ Added with Nanosized Ferrite CoFe2O4. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2419-2428.	0.8	5
116	Influence of Nano-Ag Addition on Phase Formation and Electrical Properties of (Cu0.5Tl0.5)-1223 Superconducting Phase. Journal of Superconductivity and Novel Magnetism, 2013, 26, 623-631.	0.8	25
117	Synthesis and Characterization of Tl-1223 Substituted by Scandium. Journal of Materials Science and Technology, 2013, 29, 1079-1084.	5.6	5
118	Thermomechanical Analysis of (Cu0.5Tl0.5)-1223 Substituted by Pr and La. Journal of Materials Science and Technology, 2012, 28, 169-176.	5.6	2
119	Determination of Superconducting Parameters of GdBa2Cu3O7â^î^ Added with Nanosized Ferrite CoFe2O4 from Excess Conductivity Analysis. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2281-2290.	0.8	34
120	The Influence of SnO2 Nano-Particles Addition on the Vickers Microhardness of (Bi, Pb)-2223 Superconducting Phase. Journal of Superconductivity and Novel Magnetism, 2012, 25, 739-745.	0.8	61
121	Synthesis, Characterization and Magnetoresistance Studies of Tl0.5Pb0.5Sr1.6Ba0.4CaCu2â^x Ru x O7â~Î Superconductor. Journal of Superconductivity and Novel Magnetism, 2012, 25, 451-461.	0.8	3
122	Ion Beam Analysis and Normal-State Conduction Mechanisms for (Bi, Pb)-2223 and (Tl, Pb)/Sr-1212 Superconducting Phases Substituted by Ruthenium. Journal of Superconductivity and Novel Magnetism, 2012, 25, 273-291.	0.8	11
123	Ion Beam Analysis and Electrical Resistivity Studies of (Cu0.5Tl0.5)-1223 Phase with Added Nano-oxides. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1441-1454.	0.8	8
124	Ion beam analysis and EPR studies for GdBa2Cu3â^'xRuxO7â^'δ superconducting phase. Physica C: Superconductivity and Its Applications, 2012, 477, 74-83.	0.6	5
125	Magnetic Transport Properties in GdBa2Cu3â^'x Ru x O7â^'δ Superconducting Phase. Journal of Low Temperature Physics, 2012, 167, 59-73.	0.6	6
126	Optimizing the Preparation Conditions of Bi-2223 Superconducting Phase Using PbO and PbO ₂ . Materials Sciences and Applications, 2012, 03, 224-233.	0.3	13

#	Article	IF	CITATIONS
127	EPR studies of (Bi, Pb)-2223 phase substituted by Ruthenium ions. Journal of Alloys and Compounds, 2011, 509, 7381-7388.	2.8	11
128	Excess Conductivity Analysis of (Cu0.5Tl0.5)-1223 Substituted by Pr and La. Journal of Low Temperature Physics, 2011, 163, 184-202.	0.6	22
129	Effect of Nano-Sized ZnO on the Physical Properties of (Cu0.5Tl0.25Pb0.25)Ba2Ca2Cu3O10â^´Î´. Journal of Superconductivity and Novel Magnetism, 2011, 24, 1345-1352.	0.8	39
130	Effect of Nano-Oxides Addition on the Mechanical Properties ofÂ(Cu0.5Tl0.5)-1223 Phase. Journal of Superconductivity and Novel Magnetism, 2011, 24, 1463-1472.	0.8	41
131	Thermal Analysis Studies of (Bi,ÂPb)-2223/Linear Low Density Polyethylene Composite Materials. Journal of Superconductivity and Novel Magnetism, 2011, 24, 449-454.	0.8	3
132	Mechanical Properties of (Cu0.5Tl0.5)-1223 Substituted by Pr. Journal of Superconductivity and Novel Magnetism, 2011, 24, 1947-1956.	0.8	74
133	Improving the Physical Properties of (Bi, Pb)-2223 Phase by SnO2 Nano-particles Addition. Journal of Superconductivity and Novel Magnetism, 2011, 24, 2077-2084.	0.8	86
134	Normal-state Conduction Mechanisms in GdBa2Cu3â^'x Ru x O7â^'δ Superconducting Phase. Journal of Superconductivity and Novel Magnetism, 2011, 24, 2227-2236.	0.8	10
135	EPR Studies of Tl0.5Pb0.5Sr1.6Ba0.4CaCu2â^'x Ru x O7â^'δ Superconductor. Applied Magnetic Resonance, 2011, 41, 79-93.	0.6	3
136	Effect of ZnO Nano-Oxide Addition on the Superconducting Properties of the (Bi.Pb)2223 Phase. Advanced Materials Research, 2011, 324, 241-244.	0.3	8
137	Determination of Stoichiometry and Superconducting Properties of Tl-1234 and (Cu0.25Tl0.75)-1234 Phases Substituted by Erbium. Journal of Superconductivity and Novel Magnetism, 2010, 23, 465-474.	0.8	10
138	Stabilization of Tl-1223 Phase by Arsenic Substitution. Journal of Superconductivity and Novel Magnetism, 2010, 23, 1325-1332.	0.8	73
139	Electrical Resistivity and Magnetoresistance Studies ofÂ(Bi,Pb)-2223 Phase Substituted by Ru. Journal of Superconductivity and Novel Magnetism, 2010, 23, 1575-1588.	0.8	47
140	Ion Beam Analysis and Physical Properties Measurements ofÂ(Tl0.8Hg0.2â^'x Sb x)Ba2Ca2Cu3O9â^'δ. Journal of Superconductivity and Novel Magnetism, 2009, 22, 495-504.	0.8	11
141	Excess conductivity analysis for Tl0.8Hg0.2Ba2Ca2Cu3O9â^î´ substituted by Sm and Yb. Solid State Communications, 2009, 149, 281-285.	0.9	43
142	Enhancement the formation of (Cu, Tl)-1223 superconducting phase by Cd-substitution. Journal of Alloys and Compounds, 2009, 474, 517-521.	2.8	9
143	Thermal expansion measurements of (Cu0.25Tl0.75)-1234 added by MgO-nano particles. Journal of Alloys and Compounds, 2009, 478, 642-647.	2.8	7
144	Effect of Sm-substitution on the electrical and magnetic properties of (Tl0.8Hg0.2)-1223. Journal of Alloys and Compounds, 2009, 481, 462-469.	2.8	14

#	Article	IF	CITATIONS
145	Mechanical properties of (Cu0.5Tl0.5)-1223 added by nano-SnO2. Journal of Alloys and Compounds, 2009, 486, 733-737.	2.8	63
146	PIXE and RBS analysis of Tl-1223 superconducting phase substituted by scandium. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 133-139.	0.6	18
147	Study of the Influence of MgO Nano-Oxide Addition onÂthe Electrical and Mechanical Properties ofÂ (Cu0.25Tl0.75)-1234Â Superconducting Phase. Journal of Superconductivity and Novel Magnetism, 2008, 21, 461-466.	0.8	26
148	Investigation of specific heat and thermopower properties of Tl-1223 substituted by sodium. Solid State Communications, 2008, 145, 201-206.	0.9	6
149	Normal-state Hall effect measurements for Tl0.8Hg0.2Ba2Ca2Cu3O9â^î´ substituted by Sm and Yb. Solid State Communications, 2008, 146, 92-96.	0.9	12
150	Improvement the superconducting parameters of Tl-1212 by Ruthenium substitution. Journal of Physics: Conference Series, 2008, 97, 012186.	0.3	4
151	Superconducting properties of zinc substitution in Tl-2223 phase. Journal of Alloys and Compounds, 2008, 460, 500-506.	2.8	14
152	Magnetoresistance studies of Tl-1223 phase substituted by scandium. Journal of Physics: Conference Series, 2008, 97, 012323.	0.3	5
153	Superconducting Properties of (Tl1.6Pb0.4)-2223 Substituted by Praseodymium. Asian Journal of Applied Sciences, 2008, 2, 63-73.	0.4	1
154	Thermal expansion measurements using x-ray powder diffraction of Tl-1223 substituted by molybdenum. Superconductor Science and Technology, 2007, 20, 401-405.	1.8	8
155	Magnetoresistance studies of Tl-1212 phase substituted by scandium. Superconductor Science and Technology, 2006, 19, 1104-1109.	1.8	22
156	Effect of the partial replacement of Ca by alkaline element Na on Tl-1223 superconductor. Journal of Physics: Conference Series, 2006, 43, 474-479.	0.3	6
157	Superconducting properties of Tl-2223 phase substituted by iron. Journal of Physics: Conference Series, 2006, 43, 450-453.	0.3	3
158	Electric resistivity and magnetic susceptibility studies of Tl-1223 substituted by cobalt. Superconductor Science and Technology, 2005, 18, 311-316.	1.8	23
159	Synthesis and electrical resistivity studies of Tl1ÂxPrxBa2Ca2Cu3O9ÂÂsuperconductors. Superconductor Science and Technology, 2004, 17, 35-41.	1.8	23
160	Electrical resistivity behaviour in Tl2Ba2Ca1ÂxRxCu2O8ÂÂwith R = Nd and Gd. Superconductor Science and Technology, 2004, 17, 211-219.	1.8	5
161	Superconducting properties of Tl1\$minus\$xYbxBa2Ca2Cu3O9\$minus\$\$delta\$. Superconductor Science and Technology, 2002, 15, 933-937.	1.8	17
162	Electrical and magnetic properties of Hg0.3Tl0.7Ba2Ca3Cu4O10\$plus\$\$delta\$ doped with Ni and Ag. Superconductor Science and Technology, 2002, 15, 938-944.	1.8	25

#	Article	IF	CITATIONS
163	Effect of magnetic field on the electrical resistance of Tl-1223 doped by Zn and Ni. Physica B: Condensed Matter, 2001, 307, 72-77.	1.3	22
164	Transverse and longitudinal magnetoresistances of Tl1â^'xErxBa2Ca2Cu3O9â^'δ in weak magnetic field. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 328-329.	1.0	9
165	Effect of cooling rate and strontium doping on the formation of (Hg, Tl)-1234 phase. Superconductor Science and Technology, 2001, 14, 637-642.	1.8	7
166	Replacement study of Thallium by Zn and Ni in Tl-1223 superconductor phase. Physica C: Superconductivity and Its Applications, 2000, 341-348, 685-686.	0.6	23
167	Synthesis and characterization of the Indium-doped Tl-1223 phase. Journal of Materials Science, 2000, 35, 2893-2896.	1.7	7
168	Study of the localization and Cooper pair breaking in Tl1-xErxBa2Ca2Cu3O9-δ. Superconductor Science and Technology, 2000, 13, 1107-1112.	1.8	15
169	Synthesis and study of the ceramic high- superconductor (, 0.5, 0.7, 0.9 and 1). Superconductor Science and Technology, 1999, 12, 147-152.	1.8	21
170	Stabilization of mercury cuprates by thallium, superconductivity in Hg1-xTlxBa2Can-1CunO2n+2+d. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 1103-1109.	0.4	9
171	Low field hall effect in FeCl3 graphite intercalation compounds. Synthetic Metals, 1989, 34, 479-484.	2.1	3
172	ESR Investigations of (BaSnO3)x/(Cu, Tl) 1223 composite in the normal and superconducting state. Phase Transitions, 0, , 1-11.	0.6	0