Santiago MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2008961/publications.pdf

Version: 2024-02-01

136740 161609 3,740 115 32 54 citations h-index g-index papers 116 116 116 3208 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Molecularly Engineering Defective Basal Planes in Molybdenum Sulfide for the Direct Synthesis of Benzimidazoles by Reductive Coupling of Dinitroarenes with Aldehydes. Jacs Au, 2022, 2, 601-612.	3.6	9
2	Gold nanoparticle-catalysed functionalization of carbonâ€"hydrogen bonds by carbene transfer reactions. Dalton Transactions, 2022, 51, 5250-5256.	1.6	2
3	Onâ€POM Ringâ€Opening Polymerisation of <i>N</i> â€Carboxyanhydrides. Angewandte Chemie - International Edition, 2021, 60, 3449-3453.	7.2	21
4	Onâ€POM Ringâ€Opening Polymerisation of N â€Carboxyanhydrides. Angewandte Chemie, 2021, 133, 3491-349	951.6	5
5	Selective Anchoring Groups for Molecular Electronic Junctions with ITO Electrodes. ACS Sensors, 2021, 6, 530-537.	4.0	8
6	Fabrication of metallic and non-metallic top electrodes for large-area molecular junctions. Nanoscale, 2021, 13, 9055-9074.	2.8	16
7	Rücktitelbild: Onâ€POM Ringâ€Opening Polymerisation of <i>N</i> â€Carboxyanhydrides (Angew. Chem.) Tj E7	ГQq1 1 0.:	784314 rg8T
8	Unraveling a Biomass-Derived Multiphase Catalyst for the Dehydrogenative Coupling of Silanes with Alcohols under Aerobic Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2912-2928.	3.2	8
9	Ligand effects in the stabilization of gold nanoparticles anchored on the surface of graphene: Implications in catalysis. Journal of Catalysis, 2021, 394, 113-120.	3.1	23
10	Analysis of Molecular Interactions between Components in Phospholipid-Immunosuppressant-Antioxidant Mixed Langmuir Films. Langmuir, 2021, 37, 5601-5616.	1.6	32
11	Uncapped Gold Nanoparticles for the Metallization of Organic Monolayers. Advanced Materials Interfaces, 2021, 8, 2100876.	1.9	5
12	pH control of conductance in a pyrazolyl Langmuir–Blodgett monolayer. Journal of Materials Chemistry C, 2021, 9, 2882-2889.	2.7	12
13	Reduced Graphene Oxides as Carbocatalysts in Acceptorless Dehydrogenation of <i>N</i> -Heterocycles. ACS Catalysis, 2021, 11, 14688-14693.	5. 5	15
14	Towards the design of effective multipodal contacts for use in the construction of Langmuir–Blodgett films and molecular junctions. Journal of Materials Chemistry C, 2020, 8, 672-682.	2.7	13
15	Bottom Effect in Atomic Force Microscopy Nanomechanics. Small, 2020, 16, e2000269.	5.2	19
16	Nanofabrication Techniques in Large-Area Molecular Electronic Devices. Applied Sciences (Switzerland), 2020, 10, 6064.	1.3	21
17	A Platinum Molecular Complex Immobilised on the Surface of Graphene as Active Catalyst in Alkyne Hydrosilylation. European Journal of Inorganic Chemistry, 2020, 2020, 4254-4262.	1.0	8
18	Single molecule vs. large area design of molecular electronic devices incorporating an efficient 2-aminepyridine double anchoring group. Nanoscale, 2019, 11, 15871-15880.	2.8	20

#	Article	IF	CITATIONS
19	The non-innocent role of graphene in the formation/immobilization of ultra-small gold nanoparticles functionalized with N-heterocyclic carbene ligands. Journal of Catalysis, 2019, 375, 419-426.	3.1	16
20	Electrically transmissive alkyne-anchored monolayers on gold. Nanoscale, 2019, 11, 7976-7985.	2.8	16
21	Improving Catalyst Activity in Hydrocarbon Functionalization by Remote Pyrene–Graphene Stacking. Chemistry - A European Journal, 2019, 25, 9534-9539.	1.7	12
22	New routes to organometallic molecular junctions (i) via (i) a simple thermal processing protocol. Journal of Materials Chemistry C, 2019, 7, 6630-6640.	2.7	19
23	Palladium doping of In ₂ O ₃ towards a general and selective catalytic hydrogenation of amides to amines and alcohols. Catalysis Science and Technology, 2019, 9, 6965-6976.	2.1	19
24	The fabrication of ultrathin films and their gas separation performance from polymers of intrinsic microporosity with two-dimensional (2D) and three-dimensional (3D) chain conformations. Journal of Colloid and Interface Science, 2019, 536, 474-482.	5.0	20
25	Interfacial tensions of pyridinium-based ionic liquids and n-alkanes or n-alkanols. Journal of Molecular Liquids, 2018, 252, 469-474.	2.3	5
26	Stabilization of Nanoparticles Produced by Hydrogenation of Palladium–N-Heterocyclic Carbene Complexes on the Surface of Graphene and Implications in Catalysis. ACS Omega, 2018, 3, 15217-15228.	1.6	22
27	Unconventional Single-Molecule Conductance Behavior for a New Heterocyclic Anchoring Group: Pyrazolyl. Journal of Physical Chemistry Letters, 2018, 9, 5364-5372.	2.1	33
28	Towards molecular electronic devices based on â€~all-carbon' wires. Nanoscale, 2018, 10, 14128-14138.	2.8	37
29	Singleâ€Molecule Conductance Studies of Organometallic Complexes Bearing 3â€Thienyl Contacting Groups. Chemistry - A European Journal, 2017, 23, 2133-2143.	1.7	50
30	Allâ€Carbon Electrode Molecular Electronic Devices Based on Langmuir–Blodgett Monolayers. Small, 2017, 13, 1603207.	5.2	16
31	Influence of surface coverage on the formation of 4,4′-bipyridinium (viologen) single molecular junctions. Journal of Materials Chemistry C, 2017, 5, 11717-11723.	2.7	13
32	Ultrathin Composite Polymeric Membranes for CO ₂ /N ₂ Separation with Minimum Thickness and High CO ₂ Permeance. ChemSusChem, 2017, 10, 4014-4017.	3.6	36
33	Highly-conducting molecular circuits based on antiaromaticity. Nature Communications, 2017, 8, 15984.	5.8	111
34	High surface coverage of a self-assembled monolayer by <i>in situ</i> synthesis of palladium nanodeposits. Nanoscale, 2017, 9, 13281-13290.	2.8	15
35	Molecular Electronics: History and Fundamentals. Australian Journal of Chemistry, 2016, 69, 244.	0.5	32
36	Molecular Wires: An Overview of the Building Blocks of Molecular Electronics. , 2016, , 87-116.		4

3

#	Article	IF	CITATIONS
37	Nanofabrication and Electrochemical Characterization of Self-Assembled Monolayers Sandwiched between Metal Nanoparticles and Electrode Surfaces. Journal of Chemical Education, 2016, 93, 1441-1445.	1.1	16
38	Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations. Journal of Materials Chemistry C, 2016, 4, 9036-9043.	2.7	13
39	Low variability of single-molecule conductance assisted by bulky metal–molecule contacts. RSC Advances, 2016, 6, 75111-75121.	1.7	18
40	Design and Synthesis of Aviram–Ratnerâ€Type Dyads and Rectification Studies in Langmuir–Blodgett (LB) Films. Chemistry - A European Journal, 2016, 22, 10539-10547.	1.7	26
41	Solvent Dependence of the Single Molecule Conductance of Oligoyne-Based Molecular Wires. Journal of Physical Chemistry C, 2016, 120, 15666-15674.	1.5	67
42	Scanning tunnelling microscopy analysis of octameric o-phenylenes on Au(111). RSC Advances, 2016, 6, 55970-55975.	1.7	1
43	Effect of the Molecule–Metal Interface on the Surface-Enhanced Raman Scattering of 1,4-Benzenedithiol. Journal of Physical Chemistry C, 2016, 120, 1038-1042.	1.5	26
44	Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics. Journal of the American Chemical Society, 2016, 138, 1294-1300.	6.6	88
45	Experimental and predicted vapour–liquid equilibrium of the binary mixtures n-heptaneÂ+Âchlorobutane isomers. Fluid Phase Equilibria, 2016, 409, 72-77.	1.4	4
46	Electrical characterization of single molecule and Langmuir–Blodgett monomolecular films of a pyridine-terminated oligo(phenylene-ethynylene) derivative. Beilstein Journal of Nanotechnology, 2015, 6, 1145-1157.	1.5	17
47	Electrochemical Single-Molecule Transistors with Optimized Gate Coupling. Journal of the American Chemical Society, 2015, 137, 14319-14328.	6.6	94
48	Effect of Mechanical Strain on Electric Conductance of Molecular Junctions. Journal of Physical Chemistry C, 2015, 119, 19452-19457.	1.5	11
49	Single Gold Atom Containing Oligo(phenylene)ethynylene: Assembly into LB Films and Electrical Characterization. Journal of Physical Chemistry C, 2015, 119, 784-793.	1.5	30
50	Towards the Fabrication of the Topâ€Contact Electrode in Molecular Junctions by Photoreduction of a Metal Precursor. Chemistry - A European Journal, 2014, 20, 3421-3426.	1.7	13
51	Molecular Electronic Devices: From an Organometallic Monolayer to an Organic Monolayer Covered by Metal Nanoislands: A Simple Thermal Protocol for the Fabrication of the Top Contact Electrode in Molecular Electronic Devices (Adv. Mater. Interfaces 9/2014). Advanced Materials Interfaces, 2014, 1, .	1.9	1
52	From an Organometallic Monolayer to an Organic Monolayer Covered by Metal Nanoislands: A Simple Thermal Protocol for the Fabrication of the Top Contact Electrode in Molecular Electronic Devices. Advanced Materials Interfaces, 2014, 1, 1400128.	1.9	21
53	Nanofabrication techniques of highly organized monolayers sandwiched between two electrodes for molecular electronics. Nanofabrication, 2014, 1 , .	1.1	15
54	Thermophysical Properties of the Binary Mixture 1-Propylpyridinium Tetrafluoroborate with Methanol. Journal of Chemical & Engineering Data, 2014, 59, 1564-1573.	1.0	23

#	Article	IF	CITATIONS
55	Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films. Journal of Materials Chemistry C, 2014, 2, 7348-7355. Combined Spectroscopic and Quantum Chemical Study of	2.7	36
56	[<i>trans</i> -Ru(C≡CC ₆ H ₄ R ¹ -4) ₂ (dppe) ₂] <and [<i>trans</i>-Ru(C≡CC₆H₄R¹-4)(C≡CC₆H₄(ci>n)</and 		
57	Organometallics, 2014, 33, 4947-4963. Simplifying the conductance profiles of molecular junctions: the use of the trimethylsilylethynyl moiety as a molecule–gold contact. Dalton Transactions, 2013, 42, 338-341.	1.6	83
58	The structure and coordinative self-assembly of films based on a palladium compound of pyridyl-acetylene platinum and its application in Suzuki and Heck coupling reactions. Journal of Materials Chemistry A, 2013, 1, 9164.	5.2	12
59	Thermophysical Properties of Three Compounds from the Acrylate Family. Journal of Chemical & Engineering Data, 2013, 58, 1193-1202.	1.0	43
60	Surface study of binary mixtures containing chlorinated and oxygenated compounds. Journal of Molecular Liquids, 2013, 181, 1-7.	2.3	23
61	Controlling the Structural and Electrical Properties of Diacid Oligo(Phenylene Ethynylene) Langmuir–Blodgett Films. Chemistry - A European Journal, 2013, 19, 5352-5363.	1.7	16
62	Acetylene Used as a New Linker for Molecular Junctions in Phenylene–Ethynylene Oligomer Langmuir–Blodgett Films. Journal of Physical Chemistry C, 2012, 116, 9142-9150.	1.5	22
63	Volumetric characterization of pyridinium-based ionic liquids. Fluid Phase Equilibria, 2012, 317, 102-109.	1.4	29
64	Comparison of the Conductance of Three Types of Porphyrinâ€Based Molecular Wires: <i>β,meso,βâ€</i> Fused Tapes, <i>meso</i> â€Butadiyneâ€Linked and Twisted <i>mesoâ€meso</i> Linked Olig Advanced Materials, 2012, 24, 653-657.	om ers.	101
65	Looking Ahead: Challenges and Opportunities in Organometallic Chemistryâ€. Organometallics, 2011, 30, 7-12.	1.1	22
66	Directionally Oriented LB Films of an OPE Derivative: Assembly, Characterization, and Electrical Properties. Langmuir, 2011, 27, 3600-3610.	1.6	29
67	Long-range electron tunnelling in oligo-porphyrin molecular wires. Nature Nanotechnology, 2011, 6, 517-523.	15.6	312
68	Metal–Molecule–Metal Junctions in Langmuir–Blodgett Films Using a New Linker: Trimethylsilane. Chemistry - A European Journal, 2010, 16, 13398-13405.	1.7	33
69	Photochemical behaviour of an acid-terminated azopolymer in solution and in Langmuir–Blodgett films. Current Applied Physics, 2010, 10, 874-879.	1.1	5
70	The Impact of <i>E</i> â^' <i>Z</i> Photo-Isomerization on Single Molecular Conductance. Nano Letters, 2010, 10, 2019-2023.	4.5	76
71	Volumetric, Acoustic, and Refractive Properties of Isomeric Chlorobutanes with Diisopropyl Ether. Journal of Chemical & Data, 2010, 55, 5953-5959.	1.0	29
72	Identifying Diversity in Nanoscale Electrical Break Junctions. Journal of the American Chemical Society, 2010, 132, 9157-9164.	6.6	124

#	Article	IF	CITATIONS
73	Electrochemical Scanning Tunneling Spectroscopy of Redox-Active Molecules Bound by Auâ°'C Bonds. Journal of the American Chemical Society, 2010, 132, 2494-2495.	6.6	59
74	Fabrication, Characterization, and Electrical Properties of Langmuirâ^Blodgett Films of an Acid Terminated Phenyleneâ^Ethynylene Oligomer. Chemistry of Materials, 2010, 22, 2041-2049.	3.2	25
75	The experimental determination of the conductance of single molecules. Physical Chemistry Chemical Physics, 2010, 12, 2801.	1.3	153
76	Adverse effects of asymmetric contacts on single molecule conductances of HS(CH2)nCOOH in nanoelectrical junctions. Nanotechnology, 2009, 20, 125203.	1.3	37
77	Oligoyne Single Molecule Wires. Journal of the American Chemical Society, 2009, 131, 15647-15654.	6.6	206
78	Thermophysical Study of 1-Butyl-2-Methylpyridinium Tetrafluoroborate Ionic Liquid. Journal of Physical Chemistry B, 2009, 113, 11936-11942.	1.2	37
79	Impact of Junction Formation Method and Surface Roughness on Single Molecule Conductance. Journal of Physical Chemistry C, 2009, 113, 5823-5833.	1.5	139
80	Anomalous length and voltage dependence of single molecule conductance. Physical Chemistry Chemical Physics, 2009, 11, 10831.	1.3	43
81	Influence of Conformational Flexibility on Single-Molecule Conductance in Nano-Electrical Junctions. Journal of Physical Chemistry C, 2009, 113, 18884-18890.	1.5	22
82	The Use of Cyclic Voltammetry To Probe the Passivation of Electrode Surfaces by Well-Ordered Self-Assembly and Langmuir–Blodgett Films. An Advanced Undergraduate Laboratory Experiment in Surface Science and Nanomaterials Chemistry. Journal of Chemical Education, 2009, 86, 723.	1.1	11
83	Kinematic Viscosities for Ether + Alkane Mixtures: Experimental Results and UNIFAC-VISCO Parameters. International Journal of Thermophysics, 2008, 29, 457-467.	1.0	21
84	The use of scanning polarization force microscopy to study the miscibility of a molecular wire candidate and an insulating fatty acid in mixed LB films. Soft Matter, 2008, 4, 1508.	1.2	19
85	A Comprehensive Study of the Single Molecule Conductance of α,ï‰-Dicarboxylic Acid-Terminated Alkanes. Journal of Physical Chemistry C, 2008, 112, 3941-3948.	1.5	53
86	Variable contact gap single-molecule conductance determination for a series of conjugated molecular bridges. Journal of Physics Condensed Matter, 2008, 20, 374119.	0.7	49
87	Study of the Temperature Dependence of Surface Tensions of Some Alkanol + Hexane Mixtures. Journal of Chemical & Chemical	1.0	36
88	Isothermal vapour–liquid equilibrium for cyclic ethers with 1-chloropentane. Fluid Phase Equilibria, 2007, 251, 8-16.	1.4	23
89	Pure and mixed films of a nitrostilbene derivative at the air–water interface, Langmuir–Blodgett multilayer fabrication, and optical characterization. Journal of Colloid and Interface Science, 2007, 308, 239-248.	5.0	18
90	Surface study of mixtures containing cyclic ethers and isomeric chlorobutanes. Journal of Chemical Thermodynamics, 2007, 39, 791-797.	1.0	13

#	Article	IF	Citations
91	Study of Weak Molecular Interactions through Thermodynamic Mixing Properties. Journal of Physical Chemistry B, 2006, 110, 17683-17690.	1.2	70
92	Use of UVâ^'vis Reflection Spectroscopy for Determining the Organization of Viologen and Viologen Tetracyanoquinodimethanide Monolayers. Journal of Physical Chemistry B, 2006, 110, 963-970.	1.2	40
93	Isobaric vapour–liquid equilibrium for the binary systems formed by a cyclic ether and bromocyclohexane at 40.0 and 101.3 kPa. Physics and Chemistry of Liquids, 2006, 44, 275-285.	0.4	7
94	Charge transfer complex formation at the air–water interface "in situ―studied by means of UV–vis reflection spectroscopy. Surface Science, 2006, 600, 3045-3051.	0.8	12
95	Electrochemical investigation on hybrid viologen tetracyanoquinodimethanide LB films. Journal of Electroanalytical Chemistry, 2005, 578, 203-211.	1.9	6
96	Thermodynamic study of 2-methyl-tetrahydrofuran with isomeric chlorobutanes. Thermochimica Acta, 2005, 429, 233-239.	1,2	14
97	Experimental and Predicted Vaporâ^'Liquid Equilibrium for Cyclic Ethers with 1-Chloropentane. Industrial & Engineering Chemistry Research, 2005, 44, 6981-6988.	1.8	14
98	Experimental and Predicted Viscosities of the Ternary Mixture (Hexane + 1,3-Dioxolane + 2-Butanol) at 298.15 and 313.15 K. Journal of Chemical & Engineering Data, 2005, 50, 722-726.	1.0	8
99	Vapour–Liquid equilibrium and volumetric measurements for binary mixtures of 1,3-Dioxolane with Isomeric chlorobutanes. Physics and Chemistry of Liquids, 2004, 42, 173-183.	0.4	17
100	Hybrid Langmuir and Langmuir–Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization. Surface Science, 2004, 563, 27-40.	0.8	25
101	Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures (298.15 and 313.15) K. Journal of Chemical Thermodynamics, 2004, 36, 1027-1036.	1.0	25
102	Vapour–liquid equilibrium and azeotropic behaviour of 1,2-dichloroethane with isomeric butanols. Fluid Phase Equilibria, 2004, 225, 77-83.	1.4	8
103	Excess properties of the ternary system (hexane + 1,3-dioxolane + 1-butanol) at 298.15 and 313.15 K. Fluid Phase Equilibria, 2003, 211, 61-73.	1.4	18
104	Viscosities of Binary Mixtures of Isomeric Butanols or Isomeric Chlorobutanes with 2-Methyltetrahydrofuran. Journal of Chemical & Engineering Data, 2003, 48, 1296-1300.	1.0	36
105	Experimental values and ERAS model calculations for excess molar volumes and enthalpies of the ternary system 2-butanol $+ 1,3$ -dioxolane $+ $ cyclohexane. Canadian Journal of Chemistry, 2003, 81, 357-363.	0.6	18
106	Electrochemistry of Langmuir-Blodgett Films Incorporating Both a Viologen Derivative and Tetracyanoquinodimethane. Journal of the Electrochemical Society, 2002, 149, E402.	1.3	7
107	Isobaric Vaporâ^'Liquid Equilibrium for the Binary Mixtures (2-Butanol +n-Hexane) and (2-Butanol +) Tj ETQq1 1 C Chemical & Company Co).784314 r 1.0	gBT /Overlog 13
108	LB films of TCNQ in a mixed valence state incorporated from the aqueous subphase: preparation and characterisation. Synthetic Metals, 2002, 128, 7-14.	2.1	3

7

#	Article	IF	CITATIONS
109	Densities and speeds of sound in the ternary mixture (2-butanol + n-hexane + 1-chlorobutane) at 298.15 and 313.15 K. Thermochimica Acta, 2002, 381, 181-193.	1.2	28
110	Isobaric vapour–liquid equilibrium of binary and ternary mixtures containing cyclohexane, n-hexane, 1,3-dioxolane and 1-butanol at 40.0 and 101.3 kPa. Chemical Engineering Journal, 2002, 88, 1-9.	6.6	16
111	Excess molar enthalpies of 1,3-dioxolane, or 1,4-dioxane with isomeric butanols. Journal of Chemical Thermodynamics, 2002, 34, 1351-1360.	1.0	30
112	Title is missing!. International Journal of Thermophysics, 2002, 23, 1455-1468.	1.0	24
113	Density and Speed of Sound for Binary Mixtures of a Cyclic Ether with a Butanol Isomer. Journal of Solution Chemistry, 2002, 31, 905-915.	0.6	51
114	Isobaric vapourâ€"liquid equilibrium for the binary mixtures of 2-methyl-2-propanol with some halohydrocarbons at 40.0 and 101.3 kPa. Fluid Phase Equilibria, 2001, 192, 49-61.	1.4	10
115	Title is missing!. International Journal of Thermophysics, 2001, 22, 1629-1642.	1.0	18