Karol Grela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2008937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ruthenium-Based Olefin Metathesis Catalysts Bearing <i>N</i> -Heterocyclic Carbene Ligands. Chemical Reviews, 2009, 109, 3708-3742.	23.0	936
2	Ring-Closing Alkyne Metathesis: Application to the Stereoselective Total Synthesis of Prostaglandin E2-1,15-Lactone. Angewandte Chemie - International Edition, 2000, 39, 1234-1236.	7.2	562
3	Nitro-Substituted Hoveydaâ^'Grubbs Ruthenium Carbenes:Â Enhancement of Catalyst Activity through Electronic Activation. Journal of the American Chemical Society, 2004, 126, 9318-9325.	6.6	444
4	A Highly Efficient Ruthenium Catalyst for Metathesis Reactions. Angewandte Chemie - International Edition, 2002, 41, 4038-4040.	7.2	391
5	Sustainable Concepts in Olefin Metathesis. Angewandte Chemie - International Edition, 2007, 46, 6786-6801.	7.2	328
6	In an Attempt to Provide a User's Guide to the Galaxy of Benzylidene, Alkoxybenzylidene, and Indenylidene Ruthenium Olefin Metathesis Catalysts. Chemistry - A European Journal, 2008, 14, 806-818.	1.7	215
7	Aqueous Olefin Metathesis. Angewandte Chemie - International Edition, 2009, 48, 442-454.	7.2	193
8	A green catalyst for green chemistry: Synthesis and application of an olefin metathesis catalyst bearing a quaternary ammonium group. Green Chemistry, 2006, 8, 685-688.	4.6	151
9	A New Concept for the Noncovalent Binding of a Ruthenium-Based Olefin Metathesis Catalyst to Polymeric Phases:Â Preparation of a Catalyst on Raschig Rings. Journal of the American Chemical Society, 2006, 128, 13261-13267.	6.6	144
10	Advanced Fine-Tuning of Grubbs/Hoveyda Olefin Metathesis Catalysts:Â A Further Step toward an Optimum Balance between Antinomic Properties. Journal of the American Chemical Society, 2006, 128, 13652-13653.	6.6	140
11	Novel and Flexible Entries into Prostaglandins and Analogues Based on Ring Closing Alkyne Metathesis or Alkyne Cross Metathesis. Journal of the American Chemical Society, 2000, 122, 11799-11805.	6.6	133
12	Olefin metathesis in ionic liquids. Chemical Society Reviews, 2008, 37, 2433.	18.7	128
13	A Highly Efficient Ruthenium Catalyst for Metathesis Reactions. Angewandte Chemie, 2002, 114, 4210-4212.	1.6	112
14	Structure and Activity Peculiarities of Ruthenium Quinoline and Quinoxaline Complexes:Â Novel Metathesis Catalysts. Organometallics, 2006, 25, 3599-3604.	1.1	112
15	A PS-DES immobilized ruthenium carbene: a robust and easily recyclable catalyst for olefin metathesis. Tetrahedron Letters, 2002, 43, 9055-9059.	0.7	105
16	Highly active catalysts for olefin metathesis in water. Catalysis Science and Technology, 2012, 2, 2424.	2.1	105
17	Concise total syntheses of epothilone A and C based on alkyne metathesis. Chemical Communications, 2001, , 1057-1059.	2.2	92
18	The doping effect of fluorinated aromatic hydrocarbon solvents on the performance of common olefin metathesis catalysts: application in the preparation of biologically active compounds. Chemical Communications, 2008, , 6282.	2.2	91

#	Article	IF	CITATIONS
19	New tunable catalysts for olefin metathesis: Controlling the initiation through electronic factors. Journal of Molecular Catalysis A, 2006, 254, 118-123.	4.8	90
20	A Good Bargain: An Inexpensive, Air-Stable Ruthenium Metathesis Catalyst Derived from α-Asarone. European Journal of Organic Chemistry, 2003, 2003, 963-966.	1.2	87
21	A Highly Active Aqueous Olefin Metathesis Catalyst Bearing a Quaternary Ammonium Group. ChemSusChem, 2008, 1, 103-109.	3.6	86
22	A Dormant Ruthenium Catalyst Bearing a Chelating Carboxylate Ligand: Inâ€Situ Activation and Application in Metathesis Reactions. Angewandte Chemie - International Edition, 2007, 46, 7206-7209.	7.2	83
23	Studies on Electronic Effects in Oâ€, N―and Sâ€Chelated Ruthenium Olefinâ€Metathesis Catalysts. Chemistry - A European Journal, 2010, 16, 8726-8737.	1.7	82
24	Probing of the Ligand Anatomy: Effects of the Chelating Alkoxy Ligand Modifications on the Structure and Catalytic Activity of Ruthenium Carbene Complexes. Advanced Synthesis and Catalysis, 2007, 349, 193-203.	2.1	80
25	The Doping Effect of Fluorinated Aromatic Solvents on the Rate of Ruthenium atalysed Olefin Metathesis. Chemistry - A European Journal, 2011, 17, 12981-12993.	1.7	79
26	Ortho- and Para-Substituted Hoveydaâ^'Grubbs Carbenes. An Improved Synthesis of Highly Efficient Metathesis Initiatorsâ€. Journal of Organic Chemistry, 2004, 69, 6894-6896.	1.7	75
27	Olefin metathesis in water using acoustic emulsification. Green Chemistry, 2008, 10, 271.	4.6	74
28	Activated pyridinium-tagged ruthenium complexes as efficient catalysts for ring-closing metathesis. Journal of Organometallic Chemistry, 2006, 691, 5397-5405.	0.8	73
29	Metathesis@MOF: Simple and Robust Immobilization of Olefin Metathesis Catalysts inside (Al)MIL-101-NH ₂ . ACS Catalysis, 2016, 6, 6343-6349.	5.5	71
30	Mechanistic Insights into the <i>cis</i> – <i>trans</i> Isomerization of Ruthenium Complexes Relevant to Catalysis of Olefin Metathesis. Chemistry - A European Journal, 2010, 16, 14354-14364.	1.7	70
31	Synthesis of Substituted P-Stereogenic Vinylphosphine Oxides by Olefin Cross-Metathesis. Organic Letters, 2003, 5, 3217-3220.	2.4	69
32	Highly recoverable pyridinium-tagged Hoveyda–Grubbs pre-catalyst for olefin metathesis. Design of the boomerang ligand toward the optimal compromise between activity and reusability. Chemical Communications, 2007, , 3771.	2.2	69
33	Initiation at Snails Pace: Design and Applications of Latent Olefin Metathesis Catalysts Featuring Chelating Alkylidene Ligands. Current Organic Chemistry, 2008, 12, 1631-1647.	0.9	68
34	An Improved Catalyst for Ring-Closing Alkyne Metathesis Based on Molybdenum Hexacarbonyl/2-Fluorophenol. Organic Letters, 2002, 4, 3747-3749.	2.4	66
35	<i>E</i> - and <i>Z</i> -Selective Transfer Semihydrogenation of Alkynes Catalyzed by Standard Ruthenium Olefin Metathesis Catalysts. Organic Letters, 2016, 18, 6196-6199.	2.4	66
36	Towards "cleaner―olefin metathesis: tailoring the NHC ligand of second generation ruthenium catalysts to afford auxiliary traits. Green Chemistry, 2014, 16, 4474-4492.	4.6	65

#	Article	IF	CITATIONS
37	Ruthenium quinoline and quinoxaline complexes: Thermally triggered initiators for ring opening metathesis polymerization. Journal of Polymer Science Part A, 2007, 45, 3494-3500.	2.5	64
38	At Long Last: Olefin Metathesis Macrocyclization at High Concentration. Journal of the American Chemical Society, 2018, 140, 8895-8901.	6.6	64
39	Ruthenium Olefin Metathesis Initiators Bearing Chelating Sulfoxide Ligands. Organometallics, 2009, 28, 2693-2700.	1.1	63
40	Cross-metathesis reaction of vinyl sulfones and sulfoxides. Tetrahedron, 2003, 59, 4525-4531.	1.0	61
41	Batchwise and Continuous Nanofiltration of POSSâ€Tagged Grubbs–Hoveydaâ€Type Olefin Metathesis Catalysts. ChemSusChem, 2013, 6, 182-192.	3.6	61
42	A Fine-Tuned Molybdenum Hexacarbonyl/Phenol Initiator for Alkyne Metathesis. Journal of Organic Chemistry, 2004, 69, 7748-7751.	1.7	60
43	Is the Hoveyda–Grubbs Complex a Vinylogous Fischerâ€Type Carbene? Aromaticityâ€Controlled Activity of Ruthenium Metathesis Catalysts. Chemistry - A European Journal, 2008, 14, 9330-9337.	1.7	60
44	Latent Thermo-Switchable Olefin Metathesis Initiators Bearing a Pyridyl-Functionalized Chelating Carbene: Influence of the Leaving Group's Rigidity on the Catalyst's Performance. Organometallics, 2010, 29, 117-124.	1.1	60
45	Rational Design and Evaluation of Upgraded Grubbs/Hoveyda Olefin Metathesis Catalysts: Polyfunctional Benzylidene Ethers on the Test Bench. Organometallics, 2011, 30, 4144-4158.	1.1	60
46	Easily removable olefin metathesis catalysts. Green Chemistry, 2012, 14, 3264.	4.6	60
47	Highly selective cross-metathesis with phenyl vinyl sulphone using the â€~second generation' Grubbs' catalyst. Tetrahedron Letters, 2001, 42, 6425-6428.	0.7	59
48	Tandem Catalysis Utilizing Olefin Metathesis Reactions. Chemistry - A European Journal, 2016, 22, 9440-9454.	1.7	56
49	Homo- and Cross-Olefin Metathesis Coupling of Vinylphosphane Oxides and Electron-Poor Alkenes: Access to P-Stereogenic Dienophiles. Advanced Synthesis and Catalysis, 2006, 348, 931-938.	2.1	51
50	Olefin cross-metathesis with vinyl halides. Chemical Communications, 2008, , 2468.	2.2	51
51	A simple and practical phase-separation approach to the recycling of a homogeneous metathesis catalyst. Chemical Communications, 2006, , 841.	2.2	50
52	Specialized Ruthenium Olefin Metathesis Catalysts Bearing Bulky Unsymmetrical NHC Ligands: Computations, Synthesis, and Application. ACS Catalysis, 2019, 9, 587-598.	5.5	50
53	Quest for the ideal olefin metathesis catalyst. Pure and Applied Chemistry, 2008, 80, 31-43.	0.9	49
54	Ruthenium catalysts bearing chelating carboxylate ligands: application to metathesis reactions in water. Tetrahedron, 2010, 66, 1051-1056.	1.0	45

#	Article	IF	CITATIONS
55	Microwaveâ€Assisted Rutheniumâ€Catalysed Olefin Metathesis in Fluorinated Aromatic Hydrocarbons: A Beneficial Combination. Advanced Synthesis and Catalysis, 2011, 353, 1993-2002.	2.1	45
56	Synthesis, Structure, and Catalytic Activity of New Ruthenium(II) Indenylidene Complexes Bearing Unsymmetrical N <i>-</i> Heterocyclic Carbenes. Organometallics, 2014, 33, 2160-2171.	1.1	45
57	Formation of tetrasubstituted C–C double bonds <i>via</i> olefin metathesis: challenges, catalysts, and applications in natural product synthesis. Organic Chemistry Frontiers, 2018, 5, 494-516.	2.3	45
58	A New Tool in the Toolbox: Electron-Withdrawing Group Activated ÂRuthenium Catalysts for Olefin Metathesis. Synlett, 2013, 24, 903-919.	1.0	44
59	Forged and fashioned for faithfulness—ruthenium olefin metathesis catalysts bearing ammonium tags. Chemical Communications, 2018, 54, 122-139.	2.2	44
60	Nitro and Other Electron Withdrawing Group Activated Ruthenium Catalysts for Olefin Metathesis Reactions. Angewandte Chemie - International Edition, 2021, 60, 13738-13756.	7.2	44
61	Expanding the Family of Hoveyda–Grubbs Catalysts Containing Unsymmetrical NHC Ligands. Organometallics, 2017, 36, 3692-3708.	1.1	40
62	A Practical Larger Scale Preparation of Second-Generation Hoveyda-Type Catalysts. Organometallics, 2007, 26, 1096-1099.	1.1	39
63	Structural and Mechanistic Basis of the Fast Metathesis Initiation by a Six-Coordinated Ruthenium Catalyst. Organometallics, 2013, 32, 3625-3630.	1.1	39
64	Ruthenium Olefin Metathesis Catalysts Containing Six-Membered Sulfone and Sulfonamide Chelating Rings. Organometallics, 2011, 30, 1130-1138.	1.1	38
65	New Ruthenium(II) Indenylidene Complexes Bearing Unsymmetrical N <i>-</i> Heterocyclic Carbenes. Organometallics, 2012, 31, 7316-7319.	1.1	38
66	Chelating Ruthenium Phenolate Complexes: Synthesis, General Catalytic Activity, and Applications in Olefin Metathesis Polymerization. Chemistry - A European Journal, 2014, 20, 14120-14125.	1.7	38
67	Hoveyda–Grubbs-Type Precatalysts with UnsymmetricalN-Heterocyclic Carbenes as Effective Catalysts in Olefin Metathesis. Organometallics, 2017, 36, 2153-2166.	1.1	38
68	A New Family of Halogenâ€Chelated Hoveyda–Grubbsâ€Type Metathesis Catalysts. Chemistry - A European Journal, 2012, 18, 14237-14241.	1.7	37
69	Stable ruthenium indenylidene complexes with a sterically reduced NHC ligand. Chemical Communications, 2013, 49, 3188.	2.2	37
70	Highâ€Performance Isocyanide Scavengers for Use in Lowâ€Waste Purification of Olefin Metathesis Products. ChemSusChem, 2015, 8, 4139-4148.	3.6	37
71	2-Methyltetrahydrofuran: Sustainable solvent for ruthenium-catalyzed olefin metathesis. Catalysis Communications, 2014, 44, 80-84.	1.6	35
72	Homo- and heterogeneous Ru-based metathesis catalysts in cross-metathesis of 15-allylestrone—towards 17β-hydroxysteroid dehydrogenase type 1 inhibitors. Tetrahedron Letters, 2008, 49, 3019-3022.	0.7	34

#	Article	IF	CITATIONS
73	Highly efficient and time economical purification of olefin metathesis products from metal residues using an isocyanide scavenger. Green Chemistry, 2018, 20, 1280-1289.	4.6	33
74	Helicenes as Chiralityâ€Inducing Groups in Transitionâ€Metal Catalysis: The First Helically Chiral Olefin Metathesis Catalyst. Chemistry - A European Journal, 2018, 24, 10994-10998.	1.7	32
75	The Joy and Challenge of Small Rings Metathesis. Angewandte Chemie - International Edition, 2008, 47, 5504-5507.	7.2	31
76	Metathesis of renewable raw materials—influence of ligands in the indenylidene type catalysts on self-metathesis of methyl oleate and cross-metathesis of methyl oleate with (Z)-2-butene-1,4-diol diacetate. Green Chemistry, 2014, 16, 1579.	4.6	30
77	Synthetic and mechanistic studies on enyne metathesis: A catalyst influence. Journal of Molecular Catalysis A, 2006, 257, 59-66.	4.8	29
78	New air-stable ruthenium olefin metathesis precatalysts derived from bisphenol S. Journal of Organometallic Chemistry, 2006, 691, 5289-5297.	0.8	29
79	Nonâ€Glovebox Ethenolysis of Ethyl Oleate and FAME at Larger Scale Utilizing a Cyclic (Alkyl)(Amino)Carbene Ruthenium Catalyst. European Journal of Lipid Science and Technology, 2020, 122, 1900263.	1.0	29
80	Catalysts for new tasks: preparation and applications of tunable ruthenium catalysts for olefin metathesis. Chemical Record, 2006, 6, 144-156.	2.9	28
81	Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports. Beilstein Journal of Organic Chemistry, 2016, 12, 5-15.	1.3	28
82	Ethyl Lactate: A Green Solvent for Olefin Metathesis. ChemSusChem, 2019, 12, 4655-4661.	3.6	28
83	Convenient preparation of metals deposited on solid supports and their use in organic synthesis. Tetrahedron, 1998, 54, 10827-10836.	1.0	27
84	Ruthenium–Amido Complexes: Synthesis, Structure, and Catalytic Activity in Olefin Metathesis. Chemistry - A European Journal, 2012, 18, 6465-6469.	1.7	27
85	Ruthenium nitronate complexes as tunable catalysts for olefin metathesis and other transformations. Chemical Communications, 2013, 49, 674-676.	2.2	27
86	Low Catalyst Loadings in Selfâ€Metathesis of 1â€Dodecene. Advanced Synthesis and Catalysis, 2013, 355, 1997-2006.	2.1	27
87	In tandem or alone: a remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts. Organic and Biomolecular Chemistry, 2015, 13, 2684-2688.	1.5	27
88	Looking for the Noncyclic(amino)(alkyl)carbene Ruthenium Catalyst for Ethenolysis of Ethyl Oleate: Selectivity Is on Target. ACS Omega, 2018, 3, 18481-18488.	1.6	27
89	Preparation of Musk‣melling Macrocyclic Lactones from Biomass: Looking for the Optimal Substrate Combination. ChemSusChem, 2018, 11, 3157-3166.	3.6	27
90	Synthesis of Macrocyclic Carbonates with Musk Odor by Ring-Closing Olefin Metathesis. European Journal of Organic Chemistry, 2004, 2004, 2053-2056.	1.2	26

#	Article	IF	CITATIONS
91	Highly Active Ammonium-Tagged Olefin-Metathesis Catalyst for Simplified Purification. Synlett, 2008, 2008, 2692-2696.	1.0	26
92	3-Bromopyridine As a Sixth Ligand in Sulfoxide-Based Hoveyda Complexes: A Study on Catalytic Properties. Organometallics, 2013, 32, 2192-2198.	1.1	26
93	Ruthenium Complexes Bearing Thiopheneâ€Based Unsymmetrical <i>N</i> â€Heterocyclic Carbene Ligands as Selective Catalysts for Olefin Metathesis in Toluene and Environmentally Friendly 2â€Methyltetrahydrofuran. Chemistry - A European Journal, 2018, 24, 15372-15379.	1.7	26
94	Solvent-Dependent Resonance Raman Spectra of High-Valent Oxomolybdenum(V) Tris[3,5-bis(trifluoromethyl)phenyl]corrolate. Inorganic Chemistry, 2007, 46, 5616-5624.	1.9	25
95	Olefin Metathesis on a TLC Plate as a Tool for a Highâ€Throughput Screening of Catalystâ€ S ubstrate Sets. Advanced Synthesis and Catalysis, 2012, 354, 1043-1051.	2.1	25
96	Ruthenium-based complexes containing a benzimidazolium tag covalently connected to N-heterocyclic carbene ligands: environmentally friendly catalysts for olefin metathesis transformations. Dalton Transactions, 2013, 42, 7354.	1.6	25
97	Variation of the Sterical Properties of the N-Heterocyclic Carbene Coligand in Thermally Triggerable Ruthenium-Based Olefin Metathesis Precatalysts/Initiators. Organometallics, 2015, 34, 5383-5392.	1.1	25
98	Rational and Then Serendipitous Formation of Aza Analogues of Hoveyda-Type Catalysts Containing a Chelating Ester Group Leading to a Polymerization Catalyst Family. ACS Catalysis, 2017, 7, 4115-4121.	5.5	24
99	A Selective and Functional Group-Tolerant Ruthenium-Catalyzed Olefin Metathesis/Transfer Hydrogenation Tandem Sequence Using Formic Acid as Hydrogen Source. Journal of Organic Chemistry, 2018, 83, 2542-2553.	1.7	24
100	Ruthenium metathesis catalyst bearing chelating carboxylate ligand immobilized on mesoporous molecular sieve SBA-15. Catalysis Communications, 2012, 21, 42-45.	1.6	23
101	Synthesis of functionalised N-heterocyclic carbene ligands bearing a long spacer and their use in olefin metathesis. Dalton Transactions, 2013, 42, 7463.	1.6	23
102	Conformational Flexibility of Hoveyda-Type and Grubbs-Type Complexes Bearing Acyclic Carbenes and Its Impact on Their Catalytic Properties. Organometallics, 2015, 34, 563-570.	1.1	23
103	Simple and Mild Synthesis of Indoles via Hydroamination Reaction Catalysed by NHC–Gold Complexes: Looking for Optimized Conditions. Synlett, 2016, 27, 599-603.	1.0	23
104	Noncovalent Immobilization of Cationic Ruthenium Complex in a Metal–Organic Framework by Ion Exchange Leading to a Heterogeneous Olefin Metathesis Catalyst for Use in Green Solvents. Organometallics, 2019, 38, 3397-3405.	1.1	23
105	An isocyanide ligand for the rapid quenching and efficient removal of copper residues after Cu/TEMPO-catalyzed aerobic alcohol oxidation and atom transfer radical polymerization. Chemical Science, 2020, 11, 4251-4262.	3.7	23
106	Unequal siblings: Adverse characteristics of naphtaleneâ€based hoveydaâ€ŧype second generation initiators in ring opening metathesis polymerization. Journal of Polymer Science Part A, 2011, 49, 3448-3454.	2.5	22
107	Thermal Switchability of N-Chelating Hoveyda-type Catalyst Containing a Secondary Amine Ligand. Organometallics, 2012, 31, 462-469.	1.1	22
108	Semiheterogeneous Purification Protocol for the Removal of Ruthenium Impurities from Olefin Metathesis Reaction Products Using an Isocyanide Scavenger. Organic Process Research and Development, 2019, 23, 836-844.	1.3	22

#	Article	IF	CITATIONS
109	A Highly Selective Synthesis of Dialkenyl Sulfones via Cross-Metathesis of Divinyl Sulfone. Organic Letters, 2006, 8, 5689-5692.	2.4	21
110	Fishing for the right catalyst for the cross-metathesis reaction of methyl oleate with 2-methyl-2-butene. Catalysis Science and Technology, 2017, 7, 1284-1296.	2.1	21
111	Ruthenium Catalysts Supported by Aminoâ€&ubstituted Nâ€Heterocyclic Carbene Ligands for Olefin Metathesis of Challenging Substrates. Chemistry - A European Journal, 2017, 23, 1950-1955.	1.7	21
112	Synthesis of Selectively Substituted or Deuterated Indenes via Sequential Pd and Ru Catalysis. Journal of Organic Chemistry, 2017, 82, 4226-4234.	1.7	21
113	Sequential Alkene Isomerization and Ringâ€Closing Metathesis in Production of Macrocyclic Musks from Biomass. Chemistry - A European Journal, 2018, 24, 10403-10408.	1.7	19
114	Xâ€Ray Photoelectron Spectroscopy and Reactivity Studies of a Series of Ruthenium Catalysts. ChemCatChem, 2009, 1, 144-151.	1.8	18
115	Sulfoxideâ€Chelated Ruthenium Benzylidene Catalyst: a Synthetic Study on the Utility of Olefin Metathesis. ChemCatChem, 2016, 8, 2817-2823.	1.8	18
116	Ruthenium-Catalysed Olefin Metathesis in Environmentally Friendly Solvents: 2-Methyltetrahydrofuran Revisited. European Journal of Organic Chemistry, 2019, 2019, 640-646.	1.2	18
117	Ruthenium Complexes Featuring Unsymmetrical Nâ€Heterocyclic Carbene Ligands–Useful Olefin Metathesis Catalysts for Special Tasks. Chemical Record, 2021, 21, 3648-3661.	2.9	18
118	Hoveyda–Grubbs catalyst analogues bearing the derivatives of N-phenylpyrrol in the carbene ligand – structure, stability, activity and unique ruthenium–phenyl interactions. Dalton Transactions, 2017, 46, 11790-11799.	1.6	17
119	Sterically Tuned <i>N</i> -Heterocyclic Carbene Ligands for the Efficient Formation of Hindered Products in Ru-Catalyzed Olefin Metathesis. ACS Catalysis, 2020, 10, 11394-11404.	5.5	17
120	Catalytic and Structural Studies of Hoveyda–Grubbs Type Preâ€Catalysts Bearing Modified Ether Ligands. Advanced Synthesis and Catalysis, 2012, 354, 2734-2742.	2.1	16
121	Testing New Ruthenium Complexes bearing Chiral 1,2,4-Triazol-5-ylidene ÂŁigands as Catalysts for Asymmetric Olefin Metathesis. Synlett, 2013, 24, 1250-1254.	1.0	16
122	Mild Functionalization of Tetraoxane Derivatives via Olefin Metathesis: Compatibility of Ruthenium Alkylidene Catalysts with Peroxides. Organic Letters, 2017, 19, 520-523.	2.4	16
123	Azoliniums, Adducts, NHCs and Azomethine Ylides: Divergence in Wanzlick Equilibrium and Olefin Metathesis Catalyst Formation. Chemistry - A European Journal, 2018, 24, 4785-4789.	1.7	16
124	Olefin Metathesis Under Continuous Flow Mode. Current Organic Chemistry, 2013, 17, 2740-2748.	0.9	16
125	The simple synthesis of stable A 3 - and trans -A 2 B-molybdenum(V) corrolates. Inorganic Chemistry Communication, 2004, 7, 871-875.	1.8	15

Force Field Parametrization and Molecular Dynamics Simulation of Flexible POSS-Linked (NHC;) Tj ETQq0 0 0 rgBT $\stackrel{O}{_{1,1}}$ Poyerlock 10 Tf 50 62

#	Article	IF	CITATIONS
127	Nitrenium ions and trivalent boron ligands as analogues of N-heterocyclic carbenes in olefin metathesis: a computational study. Dalton Transactions, 2015, 44, 20021-20026.	1.6	15
128	Synthesis and catalytic activity of ruthenium indenylidene complexes bearing unsymmetrical NHC containing a heteroaromatic moiety. RSC Advances, 2016, 6, 77013-77019.	1.7	15
129	Gold(I)-Catalyzed Formation of Naphthalene/Acenaphthene Heterocyclic Acetals. Organic Letters, 2018, 20, 954-957.	2.4	15
130	Ligand-free (<i>Z</i>)-selective transfer semihydrogenation of alkynes catalyzed by <i>in situ</i> generated oxidizable copper nanoparticles. Green Chemistry, 2021, 23, 5494-5502.	4.6	15
131	Nitrogen NMR shieldings of nitroalkanes as a structural and conformational probe. Magnetic Resonance in Chemistry, 1998, 36, S85-S92.	1.1	14
132	Synthesis of Stable Ruthenium Olefin Metathesis Catalysts with Mixed Anionic Ligands. European Journal of Inorganic Chemistry, 2012, 2012, 1477-1484.	1.0	14
133	A Gentler Touch: Synthesis of Modern Ruthenium Olefin Metathesis Catalysts Sustained by Mechanical Force. ChemCatChem, 2019, 11, 5362-5369.	1.8	14
134	Preparation of macrocyclic musks via olefin metathesis: comparison with classical syntheses and recent advances. Russian Chemical Reviews, 2020, 89, 469-490.	2.5	14
135	Ruthenium Amide Complexes - Synthesis and Catalytic Activity in Olefin Metathesis and in Ring-Opening Polymerisation. European Journal of Inorganic Chemistry, 2018, 2018, 1766-1774.	1.0	13
136	Wellâ€Defined Chiral Copper NHC Complex in the Asymmetric Conjugated βâ€Borylation and Oneâ€Pot Metathesisâ€Asymmetric βâ€Borylation Reactions. Chemistry - A European Journal, 2018, 24, 891-897.	1.7	13
137	In a Quest for Selectivity Paired with Activity: A Ruthenium Olefin Metathesis Catalyst Bearing an Unsymmetrical Phenanthreneâ€Based Nâ€Heterocyclic Carbene. Chemistry - A European Journal, 2020, 26, 3782-3794.	1.7	13
138	Olefin Metathesis in Continuous Flow Reactor Employing Polar Ruthenium Catalyst and Soluble Metal Scavenger for Instant Purification of Products of Pharmaceutical Interest. ACS Sustainable Chemistry and Engineering, 2021, 9, 16450-16458.	3.2	13
139	Active metals prepared in liquid ammonia. Zinc and tin-promoted synthesis of β-hydroxyesters, homoallylic and homopropargylic alcohols. Tetrahedron, 1996, 52, 9575-9580.	1.0	12
140	Onium-tagged Ru complexes as universal catalysts for olefin metathesis reactions in various media. Pure and Applied Chemistry, 2009, 81, 2001-2012.	0.9	12
141	Enhancement of ruthenium-catalyzed olefin metathesis reactions: Searching for new catalyst or new reaction conditions?. Pure and Applied Chemistry, 2011, 83, 553-563.	0.9	12
142	5.26 Cross Metathesis. , 2014, , 1257-1301.		12
143	Hoveyda-Grubbs complexes with boryl anions are predicted to be fast metathesis catalysts. Catalysis Communications, 2016, 86, 133-138.	1.6	12
144	Ruthenium Olefin Metathesis Catalysts Systematically Modified in Chelating Benzylidene Ether Fragment: Experiment and Computations. European Journal of Inorganic Chemistry, 2018, 2018, 3675-3685.	1.0	12

#	Article	IF	CITATIONS
145	Synthesis of Substituted βâ€Functionalised Styrenes by Microwaveâ€Assisted Olefin Crossâ€Metathesis and Scalable Synthesis of Apremilast. ChemCatChem, 2019, 11, 5808-5813.	1.8	12
146	2-Methyltetrahydrofuran as a Solvent of Choice for Spontaneous Metathesis/Isomerization Sequence. ACS Omega, 2019, 4, 1831-1837.	1.6	12
147	4-Methyltetrahydropyran as a Convenient Alternative Solvent for Olefin Metathesis Reaction: Model Studies and Medicinal Chemistry Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 18215-18223.	3.2	12
148	A Mild and Simple Zinc-Promoted Barbier-Type Allylation of Aldehydes in Liquid Ammonia. Synthetic Communications, 1996, 26, 2935-2940.	1.1	11
149	A partially serendipitous discovery of thermo-switchable ruthenium olefin metathesis initiator that seem to be well suited for ROMP of monomers bearing vinyl pendant groups. Journal of Organometallic Chemistry, 2017, 847, 146-153.	0.8	11
150	Preparation of active zinc by reduction of zinc chloride with sodium in liquid ammonia and its use in the barbier reaction. Tetrahedron Letters, 1995, 36, 9225-9226.	0.7	10
151	Faster initiating olefin metathesis catalysts from introducing double bonds into cyclopropyl, cyclobutyl and cyclopentyl derivatives of Hoveyda-Grubbs precatalysts. Molecular Catalysis, 2017, 433, 313-320.	1.0	10
152	Preparation of Ruthenium Olefin Metathesis Catalysts Immobilized on MOF, SBA-15, and 13X for Probing Heterogeneous Boomerang Effect. Catalysts, 2020, 10, 438.	1.6	10
153	Activated Hoveydaâ€Grubbs Olefin Metathesis Catalysts Derived from a Large Scale Produced Pharmaceutical Intermediate – Sildenafil Aldehyde. Advanced Synthesis and Catalysis, 2021, 363, 4590-4604.	2.1	10
154	Convenient Preparation of 'High-Surface Sodium' in Liquid Ammonia: use in the Acyloin Reaction. Synlett, 1997, 1997, 267-268.	1.0	9
155	Largeâ€Scale Synthesis of a Niche Olefin Metathesis Catalyst Bearing an Unsymmetrical Nâ€Heterocyclic Carbene (NHC) Ligand and its Application in a Green Pharmaceutical Context. Chemistry - A European Journal, 2020, 26, 15708-15717.	1.7	9
156	Preparation of Allylstannanes and Distannanes Using Zinc in Liquid Ammonia. Synthetic Communications, 1998, 28, 2697-2702.	1.1	8
157	Immobilisation of the Grubbs III Olefin Metathesis Catalyst with Polyvinyl Pyridine (PVP). Synlett, 2005, 2005, 2948-2952.	1.0	8
158	Boron–boron, carbon–carbon and nitrogen–nitrogen bonding in N-heterocyclic carbenes and their diazaboryl and triazole analogues: Wanzlick equilibrium revisited. New Journal of Chemistry, 2018, 42, 6183-6190.	1.4	7
159	The Influence of Various N-Heterocyclic Carbene Ligands on Activity of Nitro-Activated Olefin Metathesis Catalysts. Molecules, 2020, 25, 2282.	1.7	7
160	Specialized Olefin Metathesis Catalysts Featuring Unsymmetrical N-Heterocyclic Carbene Ligands Bearing N-(Fluoren-9-yl) Arm. Catalysts, 2020, 10, 599.	1.6	7
161	Making the family portrait complete: Synthesis of Electron Withdrawing Group activated Hoveyda-Grubbs catalysts bearing sulfone and ketone functionalities. Journal of Organometallic Chemistry, 2020, 918, 121276.	0.8	7
162	Synthesis and Catalytic Properties of a Very Latent Selenium-Chelated Ruthenium Benzylidene Olefin Metathesis Catalyst. Organometallics, 2021, 40, 3608-3616.	1.1	7

#	Article	IF	CITATIONS
163	Ruthenium Olefin Metathesis Catalysts Bearing a Macrocyclic Nâ€Heterocyclic Carbene Ligand: Improved Stability and Activity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
164	Ligand-to-metal ratio controls stereoselectivity: Highly functional-group-tolerant, iridium-based, (E)-selective alkyne transfer semihydrogenation. Chem Catalysis, 2022, 2, 1346-1361.	2.9	7
165	Cross Metathesis of N-Allylamines and $\hat{I}\pm, \hat{I}^2$ -Unsaturated Carbonyl Compounds: A One-Pot Synthesis of Substituted Pyrroles. Synlett, 2011, 2011, 124-128.	1.0	6
166	Progress in metathesis chemistry II. Beilstein Journal of Organic Chemistry, 2015, 11, 1639-1640.	1.3	6
167	Initiation efficacy of halo-chelated cis-dichloro-configured ruthenium-based second-generation benzylidene complexes in ring-opening metathesis polymerization. Monatshefte FA¼r Chemie, 2015, 146, 1153-1160.	0.9	6
168	Anion Metathesis in Facile Preparation of Olefin Metathesis Catalysts Bearing a Quaternary Ammonium Chloride Tag. Synlett, 2019, 30, 1981-1987.	1.0	6
169	Comprehensive Protocol for the Identification and Characterization of New Psychoactive Substances in the Service of Law Enforcement Agencies. Frontiers in Chemistry, 2020, 8, 693.	1.8	6
170	Nitrogen NMR assessment of interactions between nitroso, cyano and acetyl groups across aliphatic systems. Magnetic Resonance in Chemistry, 1995, 33, 674-678.	1.1	5
171	Olefin Metathesis Reactions. , 2005, , 169-180.		5
172	2-Substituted nitrones and isomeric hydroxylamines – obtained via aluminium amalgam reduction of nitro nitriles and ketones—a new access to convenient intermediates for nitroso carbonyl compounds preparation. Tetrahedron, 2010, 66, 3608-3613.	1.0	5
173	Progress in metathesis chemistry. Beilstein Journal of Organic Chemistry, 2010, 6, 1089-1090.	1.3	5
174	An unexpected formation of a Ru(III) benzylidene complex during activation of a LatMet-type ring-opening polymerisation catalyst. Journal of Catalysis, 2018, 364, 345-353.	3.1	5
175	Modification of Polyhedral Oligomeric Silsesquioxanes (POSS) Molecules by Ruthenium Catalyzed Cross Metathesis. Molecules, 2018, 23, 1722.	1.7	5
176	Heterobimetallic Coinage Metalâ€Ruthenium Complexes Supported by Anionic Nâ€Heterocyclic Carbenes. Chemistry - A European Journal, 2021, 27, 15217-15225.	1.7	5
177	Electron impact mass spectra of some tertiary aliphatic nitro compounds. Nitrocarbonyl compounds and some analogues. Organic Mass Spectrometry, 1992, 27, 741-745.	1.3	4
178	Origin of [M + H]+ ions in electron impact mass spectra of tertiary nitrosonitriles. Journal of Mass Spectrometry, 1995, 30, 1441-1446.	0.7	4
179	Unexpected formation of nitroso-chelated cyclic η1-acylruthenium(II) complex, an effective catalysts for transfer hydrogenation reaction. Journal of Organometallic Chemistry, 2018, 867, 359-366.	0.8	4
180	Nitro group effects on the1J(CC) couplings in nitroalkanes. Magnetic Resonance in Chemistry, 1998, 36, 356-358.	1.1	3

#	Article	IF	CITATIONS
181	Preparation of Functionalized α,β-Unsaturated Sulfonamides via Olefin Cross-Metathesis. Organic Letters, 2020, 22, 4970-4973.	2.4	3
182	Ruthenium Olefin Metathesis Catalysts Featuring N-Heterocyclic Carbene Ligands Tagged with Isonicotinic and 4-(Dimethylamino)benzoic Acid Rests: Evaluation of a Modular Synthetic Strategy. Molecules, 2021, 26, 5220.	1.7	3
183	Olefin metathesis reactions of sulfur containing alkenes and dienes. Arkivoc, 2011, 2011, 71-81.	0.3	3
184	Ruthenium Complex Bearing a Hydroxy Group Functionalised Nâ€Heterocyclic Carbene Ligand – A Universal Platform for Synthesis of Tagged and Immobilised Catalysts for Olefin Metathesis. European Journal of Organic Chemistry, 2021, 2021, 6424.	1.2	3
185	Testing the 1,1,3,3-tetramethyldisiloxane linker in olefin metathesis. Comptes Rendus Chimie, 2013, 16, 566-572.	0.2	2
186	High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products. ChemSusChem, 2015, 8, 4099-4099.	3.6	2
187	Progress in metathesis chemistry. Beilstein Journal of Organic Chemistry, 2019, 15, 2765-2766.	1.3	2
188	Durch Nitro―und andere elektronenziehende Gruppen aktivierte Rutheniumâ€Katalysatoren für die Olefinmetathese. Angewandte Chemie, 2020, 133, 13854.	1.6	2
189	The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 49-56.	0.5	2
190	Testing diverse strategies for ruthenium catalyst removal after aqueous homogeneous olefin metathesis. Journal of Organometallic Chemistry, 2022, 965-966, 122320.	0.8	2
191	A Highly Selective Synthesis of Dialkenyl Sulfones via Cross-Metathesis of Divinyl Sulfone. Organic Letters, 2007, 9, 3199-3199.	2.4	1
192	A convenient synthesis of deuterium labeled tertiary aliphatic nitro ketones and nitriles – starting materials for preparation of deuterated cyclic nitrones, isomeric hydroxylamines, and corresponding C-nitroso compounds. Tetrahedron, 2010, 66, 3614-3622.	1.0	1
193	Section 6: Olefin Metathesis Catalysts-A Tabular Review. , 2014, , 573-585.		1
194	Tandem Catalysis Utilizing Olefin Metathesis Reactions. Chemistry - A European Journal, 2016, 22, 9417-9417.	1.7	1
195	Larger scale Stahl oxidation with instant Cu removal in convenient synthesis of chiral bidentate N–heterocyclic carbene precursor. Polyhedron, 2021, 199, 115090.	1.0	1
196	Design and Application of Latent Olefin Metathesis Catalysts Featuring S-Chelating Alkylidene Ligands. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 289-302.	0.5	1
197	Ruthenium Catalysts Bearing Carboxylate Ligand. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 57-69.	0.5	1
198	"Greener Shade of Ruthenium― New Concepts of Activation, Immobilization, and Recovery of Ruthenium Catalysts For Green Olefin Metathesis. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 167-183.	0.1	1

Karol Grela

#	Article	IF	CITATIONS
199	Phosphine-Free EWG-Activated Ruthenium Olefin Metathesis Catalysts. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 111-124.	0.1	1
200	Testing enabling techniques for olefin metathesis reactions of lipophilic substrates in water as a diluent. IScience, 2022, 25, 104131.	1.9	1
201	A PS-DES Immobilized Ruthenium Carbene: A Robust and Easily Recyclable Catalyst for Olefin Metathesis ChemInform, 2003, 34, no.	0.1	0
202	An Improved Catalyst for Ring-Closing Alkyne Metathesis Based on Molybdenum Hexacarbonyl/2-Fluorophenol ChemInform, 2003, 34, no.	0.1	0
203	A Highly Efficient Ruthenium Catalyst for Metathesis Reactions ChemInform, 2003, 34, no.	0.1	0
204	A Good Bargain: An Inexpensive, Air-Stable Ruthenium Metathesis Catalyst Derived from α-Asarone ChemInform, 2003, 34, no.	0.1	0
205	Cross-Metathesis Reaction of Vinyl Sulfones and Sulfoxides ChemInform, 2003, 34, no.	0.1	0
206	Synthesis of Substituted P-Stereogenic Vinylphosphine Oxides by Olefin Cross-Metathesis ChemInform, 2003, 34, no.	0.1	0
207	Synthesis of Macrocyclic Carbonates with Musk Odor by Ring-Closing Olefin Metathesis ChemInform, 2004, 35, no.	0.1	0
208	Nitro-Substituted Hoveyda—Grubbs Ruthenium Carbenes: Enhancement of Catalyst Activity Through Electronic Activation ChemInform, 2004, 35, no.	0.1	0
209	ortho- and para-Substituted Hoveyda—Grubbs Carbenes. An Improved Synthesis of Highly Efficient Metathesis Initiators ChemInform, 2005, 36, no.	0.1	0
210	A Fine-Tuned Molybdenum Hexacarbonyl/Phenol Initiator for Alknye Metathesis ChemInform, 2005, 36, no.	0.1	0
211	Olefin and Enyne Cross-Metathesis - A New Tool for the Synthesis of Alkenyl-substituted Azulenes. Synlett, 2005, 2005, 1142-1146.	1.0	0
212	Olefin Cross-Metathesis with 3-Nitropropene. Synlett, 2010, 2010, 2931-2935.	1.0	0
213	Olefin Metathesis. , 2013, , 105-126.		0
214	Outlook and Perspectives. , 2014, , 587-588.		0
215	In My Element : Ruthenium. Chemistry - A European Journal, 2018, 25, 1606.	1.7	0
216	Tandem Olefin Metathesis/α-Ketohydroxylation Revisited. Catalysts, 2021, 11, 719.	1.6	0

#	Article	IF	CITATIONS
217	An Anionic, Chelating C(sp3)/NHC ligand from the Combination of an N-heterobicyclic Carbene and Barbituric Heterocycle. Organometallics, 2021, 40, 3223-3234.	1.1	0
218	Ruthenium Catalysts Bearing O-Chelating Carboxylate Ligand: Potential Chemo-Switchable Romp Catalysts. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 279-288.	0.5	0
219	Using Olefin Metathesis To Produce Macrocyclic Products. , 2018, , .		Ο
220	Ruthenium Olefin Metathesis Catalysts Bearing Macrocyclic Nâ€Heterocyclic Carbene Ligand: Improved Stability and Activity. Angewandte Chemie, 0, , .	1.6	0
221	Ruthenium olefin metathesis catalysts bearing two bulky and unsymmetrical NHC ligands. Applied Organometallic Chemistry, 0, , .	1.7	0