List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2008861/publications.pdf Version: 2024-02-01

MANEDED R LUTZ

#	Article	IF	CITATIONS
1	Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression. Leukemia, 2022, 36, 790-800.	3.3	22
2	Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson's disease mice. Brain, Behavior, and Immunity, 2022, 101, 194-210.	2.0	34
3	Flt3L, LIF, and ILâ€10 combination promotes the selective in vitro development of ESAM ^{low} cDC2B from murine bone marrow. European Journal of Immunology, 2022, 52, 1946-1960.	1.6	2
4	Revisiting Current Concepts on the Tolerogenicity of Steady-State Dendritic Cell Subsets and Their Maturation Stages. Journal of Immunology, 2021, 206, 1681-1689.	0.4	15
5	Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cellular Immunology, 2021, 364, 104347.	1.4	4
6	Conversion of Anergic T Cells Into Foxp3- IL-10+ Regulatory T Cells by a Second Antigen Stimulus In Vivo. Frontiers in Immunology, 2021, 12, 704578.	2.2	9
7	Evaluation of autophagy mediators in myeloid-derived suppressor cells during human tuberculosis. Cellular Immunology, 2021, 369, 104426.	1.4	7
8	In Vitro Generation of Murine Myeloid-Derived Suppressor Cells, Analysis of Markers, Developmental Commitment, and Function. Methods in Molecular Biology, 2021, 2236, 99-114.	0.4	11
9	Interleukin-4 Responsive Dendritic Cells Are Dispensable to Host Resistance Against Leishmania mexicana Infection. Frontiers in Immunology, 2021, 12, 759021.	2.2	1
10	Expansion of Host Regulatory T Cells by Secreted Products of the Tapeworm Echinococcus multilocularis. Frontiers in Immunology, 2020, 11, 798.	2.2	24
11	Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts. EBioMedicine, 2020, 53, 102670.	2.7	17
12	VLA-1 Binding to Collagen IV Controls Effector T Cell Suppression by Myeloid-Derived Suppressor Cells in the Splenic Red Pulp. Frontiers in Immunology, 2020, 11, 616531.	2.2	2
13	IL-12 from endogenous cDC1, and not vaccine DC, is required for Th1 induction. JCI Insight, 2020, 5, .	2.3	28
14	Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. Journal of Clinical Investigation, 2020, 130, 2789-2799.	3.9	26
15	Caveolin-1 Controls Vesicular TLR2 Expression, p38 Signaling and T Cell Suppression in BCG Infected Murine Monocytic Myeloid-Derived Suppressor Cells. Frontiers in Immunology, 2019, 10, 2826.	2.2	18
16	Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell–killing capability. JCI Insight, 2019, 4, .	2.3	23
17	High-grade glioma associated immunosuppression does not prevent immune responses induced by therapeutic vaccines in combination with Treg depletion. Cancer Immunology, Immunotherapy, 2018, 67, 1545-1558.	2.0	13
18	Tolerogenic Transcriptional Signatures of Steady-State and Pathogen-Induced Dendritic Cells. Frontiers in Immunology, 2018, 9, 333.	2.2	22

#	Article	IF	CITATIONS
19	TIGIT+ iTregsÂelicited by human regulatory macrophages control T cell immunity. Nature Communications, 2018, 9, 2858.	5.8	101
20	Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC. Life Science Alliance, 2018, 1, e201800093.	1.3	21
21	Tissue Derived Non-Classical Monocyte Derived Host Macrophages Protect Against Murine Intestinal Acute Graft-Versus-Host Disease. Blood, 2018, 132, 3315-3315.	0.6	0
22	Phenotypically resembling myeloid derived suppressor cells are increased in children with HIV and exposed/infected with <i>Mycobacterium tuberculosis</i> . European Journal of Immunology, 2017, 47, 107-118.	1.6	27
23	Novel GM-CSF signals via IFN-γR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Advances, 2017, 1, 947-960.	2.5	78
24	RelB+ Steady-State Migratory Dendritic Cells Control the Peripheral Pool of the Natural Foxp3+ Regulatory T Cells. Frontiers in Immunology, 2017, 8, 726.	2.2	12
25	GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family. Frontiers in Immunology, 2017, 8, 1388.	2.2	66
26	Human and Murine Innate Immune Cell Populations Display Common and Distinct Response Patterns during Their In Vitro Interaction with the Pathogenic Mold Aspergillus fumigatus. Frontiers in Immunology, 2017, 8, 1716.	2.2	9
27	Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion. PLoS ONE, 2017, 12, e0178114.	1.1	10
28	Induction of CD4 ⁺ Regulatory and Polarized Effector/helper T Cells by Dendritic Cells. Immune Network, 2016, 16, 13.	1.6	47
29	Sialoadhesin promotes neuroinflammationâ€related disease progression in two mouse models of <scp>CLN</scp> disease. Glia, 2016, 64, 792-809.	2.5	45
30	<i>In vitro</i> culture of <i>Mesocestoides corti</i> metacestodes and isolation of immunomodulatory excretory–secretory products. Parasite Immunology, 2016, 38, 403-413.	0.7	12
31	Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages – a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. , 2016, 4, 49.		112
32	Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. Journal of Experimental Medicine, 2016, 213, 1881-1900.	4.2	143
33	Still Alive and Kicking: In-Vitro-Generated GM-CSF Dendritic Cells!. Immunity, 2016, 44, 1-2.	6.6	73
34	Proteomic Analysis of Excretory-Secretory Products of Mesocestoides corti Metacestodes Reveals Potential Suppressors of Dendritic Cell Functions. PLoS Neglected Tropical Diseases, 2016, 10, e0005061.	1.3	28
35	In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity. Blood, 2015, 126, 1138-1148.	0.6	71
36	Immunity and immune modulation elicited by the larval cestode <i><scp>M</scp>esocestoides vogae</i> and its products. Parasite Immunology, 2015, 37, 493-504.	0.7	15

MANFRED B LUTZ

#	Article	IF	CITATIONS
37	TCAIM Decreases T Cell Priming Capacity of Dendritic Cells by Inhibiting TLR-Induced Ca2+ Influx and IL-2 Production. Journal of Immunology, 2015, 194, 3136-3146.	0.4	12
38	Deficiency of HIF1α in Antigen-Presenting Cells Aggravates Atherosclerosis and Type 1 T-Helper Cell Responses in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2316-2325.	1.1	43
39	Immature dendritic cells convert anergic nonregulatory TÂcells into Foxp3 ^{â°} ILâ€10 ⁺ regulatory TÂcells by engaging CD28 and CTLAâ€4. European Journal of Immunology, 2015, 45, 480-491.	1.6	29
40	Dendritic Cell Subset Distributions in the Aorta in Healthy and Atherosclerotic Mice. PLoS ONE, 2014, 9, e88452.	1.1	24
41	Cathepsin B in Antigen-Presenting Cells Controls Mediators of the Th1 Immune Response during Leishmania major Infection. PLoS Neglected Tropical Diseases, 2014, 8, e3194.	1.3	31
42	EmTIP, a T-Cell Immunomodulatory Protein Secreted by the Tapeworm Echinococcus multilocularis Is Important for Early Metacestode Development. PLoS Neglected Tropical Diseases, 2014, 8, e2632.	1.3	47
43	Immunogenic and tolerogenic effects of the chimeric IL-2-diphtheria toxin cytocidal agent Ontak [®] on CD25 ⁺ cells. OncoImmunology, 2014, 3, e28223.	2.1	19
44	The Nature of Activatory and Tolerogenic Dendritic Cell-Derived Signal 2. Frontiers in Immunology, 2014, 5, 42.	2.2	5
45	Dendritic cells generated with Flt3L and exposed to apoptotic cells lack induction of T cell anergy and Foxp3+ regulatory T cell conversion in vitro. Immunobiology, 2014, 219, 230-240.	0.8	7
46	Development and validation of a fully GMP-compliant production process of autologous, tumor-lysate-pulsed dendritic cells. Cytotherapy, 2014, 16, 946-964.	0.3	27
47	Increased Frequency of Myeloid-derived Suppressor Cells during Active Tuberculosis and after Recent <i>Mycobacterium tuberculosis</i> Infection Suppresses T-Cell Function. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 724-732.	2.5	149
48	The 30-kDa and 38-kDa antigens from Mycobacterium tuberculosis induce partial maturation of human dendritic cells shifting CD4+ T cell responses towards IL-4 production. BMC Immunology, 2013, 14, 48.	0.9	12
49	Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg. Blood, 2013, 122, 2185-2194.	0.6	54
50	Autoimmunity, dendritic cells and relevance for Parkinson's disease. Journal of Neural Transmission, 2013, 120, 75-81.	1.4	42
51	How quantitative differences in dendritic cell maturation can direct T _H 1/T _H 2-cell polarization. OncoImmunology, 2013, 2, e22796.	2.1	12
52	The Nature of Activatory and Tolerogenic Dendritic Cell-Derived Signal 2. Frontiers in Immunology, 2013, 4, 198.	2.2	3
53	Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro. PLoS Neglected Tropical Diseases, 2012, 6, e1516.	1.3	97
54	Therapeutic potential of semi-mature dendritic cells for tolerance induction. Frontiers in Immunology, 2012, 3, 123.	2.2	76

#	Article	IF	CITATIONS
55	Buy one, get one free: Additional functions of GM SF in DC maturation. European Journal of Immunology, 2012, 42, 35-38.	1.6	2
56	Sequential Induction of Effector Function, Tissue Migration and Cell Death during Polyclonal Activation of Mouse Regulatory T-Cells. PLoS ONE, 2012, 7, e50080.	1.1	14
57	Role of dendritic cell maturity/costimulation for generation, homeostasis, and suppressive activity of regulatory T cells. Frontiers in Immunology, 2011, 2, 39.	2.2	83
58	Neuromelanin is an immune stimulator for dendritic cells in vitro. BMC Neuroscience, 2011, 12, 116.	0.8	38
59	Steady state migratory RelB ⁺ langerin ⁺ dermal dendritic cells mediate peripheral induction of antigenâ€specific CD4 ⁺ CD25 ⁺ Foxp3 ⁺ regulatory T cells. European Journal of Immunology, 2011, 41, 1420-1434.	1.6	76
60	Similar inflammatory DC maturation signatures induced by TNF or <i>Trypanosoma brucei</i> antigens instruct default Th2 ell responses. European Journal of Immunology, 2011, 41, 3479-3494.	1.6	37
61	CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. Journal of Clinical Investigation, 2011, 121, 2898-2910.	3.9	223
62	Subsets, expansion and activation of myeloid-derived suppressor cells. Medical Microbiology and Immunology, 2010, 199, 273-281.	2.6	150
63	Immobilized Chemokine Fields and Soluble Chemokine Gradients Cooperatively Shape Migration Patterns of Dendritic Cells. Immunity, 2010, 32, 703-713.	6.6	282
64	Revisiting the tolerogenicity of epidermal Langerhans cells. Immunology and Cell Biology, 2010, 88, 381-386.	1.0	28
65	Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, 116, e74-e80.	0.6	2,046
66	B7-H1-Deficiency Enhances the Potential of Tolerogenic Dendritic Cells by Activating CD1d-Restricted Type II NKT Cells. PLoS ONE, 2010, 5, e10800.	1.1	24
67	Myeloidâ€derived suppressor cell activation by combined LPS and IFNâ€Î³ treatment impairs DC development. European Journal of Immunology, 2009, 39, 2865-2876.	1.6	217
68	Grâ€1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloidâ€derived suppressor cell activity in BM cells. European Journal of Immunology, 2009, 39, 3538-3551.	1.6	83
69	Induction of peripheral CD4 ⁺ Tâ€cell tolerance and CD8 ⁺ Tâ€cell crossâ€tolerance by dendritic cells. European Journal of Immunology, 2009, 39, 2325-2330.	1.6	68
70	Immature and Maturation-Resistant Human Dendritic Cells Generated from Bone Marrow Require Two Stimulations to Induce T Cell Anergy In Vitro. PLoS ONE, 2009, 4, e6645.	1.1	26
71	TLR9 cooperates with TLR4 to increase IL-12 release by murine dendritic cells. Molecular Immunology, 2008, 45, 244-252.	1.0	53
72	Factors influencing the generation of murine dendritic cells from bone marrow: The special role of fetal calf serum. Immunobiology, 2008, 212, 855-862.	0.8	41

#	Article	IF	CITATIONS
73	Production of IL-12, IL-23 and IL-27p28 by bone marrow-derived conventional dendritic cells rather than macrophages after LPS/TLR4-dependent induction by Salmonella Enteritidis. Immunobiology, 2008, 212, 739-750.	0.8	46
74	An improved method to generate equine dendritic cells from peripheral blood mononuclear cells: Divergent maturation programs by IL-4 and LPS. Immunobiology, 2008, 213, 751-758.	0.8	13
75	Suppression of Mature Dendritic Cell Function by Regulatory T Cells In Vivo Is Abrogated by CD40 Licensing. Journal of Immunology, 2008, 180, 1405-1413.	0.4	48
76	Targeting HIV-1 Gag into the Defective Ribosomal Product Pathway Enhances MHC Class I Antigen Presentation and CD8+ T Cell Activation. Journal of Immunology, 2008, 180, 372-382.	0.4	23
77	Minor Role of Bystander Tolerance to Fetal Calf Serum in a Peptide-specific Dendritic Cell Vaccine Model Against Autoimmunity. Journal of Immunotherapy, 2008, 31, 656-664.	1.2	11
78	Skin-Derived Dendritic Cells Can Mediate Deletional Tolerance of Class I-Restricted Self-Reactive T Cells. Journal of Immunology, 2007, 179, 4535-4541.	0.4	115
79	Interdependency of MHC Class II/Self-Peptide and CD1d/Self-Glycolipid Presentation by TNF-Matured Dendritic Cells for Protection from Autoimmunity. Journal of Immunology, 2007, 178, 4908-4916.	0.4	20
80	Non-invasive imaging of dendritic cell migration in vivo. Immunobiology, 2006, 211, 587-597.	0.8	30
81	The mast cell mediator PGD2 suppresses IL-12 release by dendritic cells leading to Th2 polarized immune responses in vivo. Immunobiology, 2006, 211, 463-472.	0.8	63
82	Dendritic Cells Matured With TNF can be Further Activated In Vitro and After Subcutaneous Injection In Vivo Which Converts Their Tolerogenicity Into Immunogenicity. Journal of Immunotherapy, 2006, 29, 407-415.	1.2	81
83	In vivo magnetic resonance imaging of dendritic cell migration into the draining lymph nodes of mice. European Journal of Immunology, 2006, 36, 2544-2555.	1.6	90
84	Colitogenic and non-colitogenic commensal bacteria differentially trigger DC maturation and Th cell polarization: An important role for IL-6. European Journal of Immunology, 2006, 36, 1537-1547.	1.6	49
85	Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide productionin vitro. European Journal of Immunology, 2005, 35, 3533-3544.	1.6	132
86	IL-4 supports the generation of a dendritic cell subset from murine bone marrow with altered endocytosis capacity. Journal of Leukocyte Biology, 2005, 77, 535-543.	1.5	40
87	Simultaneous Induction of CD4 T Cell Tolerance and CD8 T Cell Immunity by Semimature Dendritic Cells. Journal of Immunology, 2005, 174, 3941-3947.	0.4	51
88	The Conduit System Transports Soluble Antigens from the Afferent Lymph to Resident Dendritic Cells in the T Cell Area of the Lymph Node. Immunity, 2005, 22, 19-29.	6.6	663
89	IL-3 in dendritic cell development and function: a comparison with GM-CSF and IL-4. Immunobiology, 2004, 209, 79-87.	0.8	49
90	The cyclin-dependent kinase inhibitors p27Kip1 and p21Cip1 are not essential in T cell anergy. European Journal of Immunology, 2003, 33, 3154-3163.	1.6	18

#	Article	IF	CITATIONS
91	Interleukin-3Rα+ Myeloid Dendritic Cells and Mast Cells Develop Simultaneously from Different Bone Marrow Precursors in Cultures with Interleukin-3. Journal of Investigative Dermatology, 2003, 121, 280-288.	0.3	10
92	Developmental stages of myeloid dendritic cells in mouse bone marrow. International Immunology, 2003, 15, 515-524.	1.8	73
93	Differential Functions of IL-4 Receptor Types I and II for Dendritic Cell Maturation and IL-12 Production and Their Dependency on GM-CSF. Journal of Immunology, 2002, 169, 3574-3580.	0.4	130
94	Repetitive Injections of Dendritic Cells Matured with Tumor Necrosis Factor \hat{I}_{\pm} Induce Antigen-specific Protection of Mice from Autoimmunity. Journal of Experimental Medicine, 2002, 195, 15-22.	4.2	570
95	Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?. Trends in Immunology, 2002, 23, 445-449.	2.9	1,263
96	Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen- specific CD4 T cell anergyin vitro. European Journal of Immunology, 2000, 30, 1048-1052.	1.6	121
97	An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods, 1999, 223, 77-92.	0.6	2,735
98	Migration of Langerhans cells and dermal dendritic cells in skin organ cultures: augmentation by TNF-α and IL-1 β. Journal of Leukocyte Biology, 1999, 66, 462-470.	1.5	110