
Roland Stein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2008688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid Droplets' Role in the Regulation of β-Cell Function and β-Cell Demise in Type 2 Diabetes. Endocrinology, 2022, 163, .	2.8	11
2	Lipid Droplets Protect Human β-Cells From Lipotoxicity-Induced Stress and Cell Identity Changes. Diabetes, 2021, 70, 2595-2607.	0.6	12
3	Identification of direct transcriptional targets of NFATC2 that promote \hat{I}^2 cell proliferation. Journal of Clinical Investigation, 2021, 131, .	8.2	15
4	Combinatorial transcription factor profiles predict mature and functional human islet $\hat{I}\pm$ and \hat{I}^2 cells. JCI Insight, 2021, 6, .	5.0	22
5	Sex-biased islet Î ² cell dysfunction is caused by the MODY MAFA S64F variant by inducing premature aging and senescence in males. Cell Reports, 2021, 37, 109813.	6.4	27
6	SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in Î ² Cells. Cell Metabolism, 2020, 32, 1028-1040.e4.	16.2	148
7	Myt Transcription Factors Prevent Stress-Response Gene Overactivation to Enable Postnatal Pancreatic β Cell Proliferation, Function, and Survival. Developmental Cell, 2020, 53, 390-405.e10.	7.0	11
8	Decellularized Tissue Matrix Enhances Self-Assembly of Islet Organoids from Pluripotent Stem Cell Differentiation. ACS Biomaterials Science and Engineering, 2020, 6, 4155-4165.	5.2	37
9	Loss of the transcription factor MAFB limits \hat{I}^2 -cell derivation from human PSCs. Nature Communications, 2020, 11, 2742.	12.8	37
10	Lipid Droplet Accumulation in Human Pancreatic Islets Is Dependent On Both Donor Age and Health. Diabetes, 2020, 69, 342-354.	0.6	41
11	The Pdx1-Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet β-Cell Function. Diabetes, 2019, 68, 1806-1818.	0.6	31
12	Examining How the MAFB Transcription Factor Affects Islet β-Cell Function Postnatally. Diabetes, 2019, 68, 337-348.	0.6	36
13	α Cell Function and Gene Expression Are Compromised in Type 1 Diabetes. Cell Reports, 2018, 22, 2667-2676.	6.4	152
14	Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca2+ Sensitivity of Insulin Secretion Vesicles. Developmental Cell, 2018, 45, 347-361.e5.	7.0	73
15	<i>MAFA</i> missense mutation causes familial insulinomatosis and diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1027-1032.	7.1	88
16	The mammal-specific <i>Pdx1</i> Area II enhancer has multiple essential functions in early endocrine-cell specification and postnatal β-cell maturation. Development (Cambridge), 2017, 144, 248-257.	2.5	10
17	Mafa Enables Pdx1 to Effectively Convert Pancreatic Islet Progenitors and Committed Islet α-Cells Into β-Cells In Vivo. Diabetes, 2017, 66, 1293-1300.	0.6	52
18	Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation. Cell Metabolism, 2017, 25, 1362-1373.e5.	16.2	153

ROLAND STEIN

#	Article	IF	CITATIONS
19	Defining a Novel Role for the Pdx1 Transcription Factor in Islet β-Cell Maturation and Proliferation During Weaning. Diabetes, 2017, 66, 2830-2839.	0.6	51
20	The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E91-E102.	3.5	49
21	MafA-Controlled Nicotinic Receptor Expression Is Essential for Insulin Secretion and Is Impaired in Patients with Type 2 Diabetes. Cell Reports, 2016, 14, 1991-2002.	6.4	27
22	Lack of Prox1 Downregulation Disrupts the Expansion and Maturation of Postnatal Murine β-Cells. Diabetes, 2016, 65, 687-698.	0.6	18
23	Stress-impaired transcription factor expression and insulin secretion in transplanted human islets. Journal of Clinical Investigation, 2016, 126, 1857-1870.	8.2	86
24	The FOXP1, FOXP2 and FOXP4 transcription factors are required for islet alpha cell proliferation and function in mice. Diabetologia, 2015, 58, 1836-1844.	6.3	41
25	Dynamic Recruitment of Functionally Distinct Swi/Snf Chromatin Remodeling Complexes Modulates Pdx1 Activity in Islet β Cells. Cell Reports, 2015, 10, 2032-2042.	6.4	53
26	MLL3 and MLL4 Methyltransferases Bind to the MAFA and MAFB Transcription Factors to Regulate Islet β-Cell Function. Diabetes, 2015, 64, 3772-3783.	0.6	59
27	Preserving Mafa Expression in Diabetic Islet β-Cells Improves Glycemic Control in Vivo. Journal of Biological Chemistry, 2015, 290, 7647-7657.	3.4	54
28	Transcriptional Activity of the Islet β Cell Factor Pdx1 Is Augmented by Lysine Methylation Catalyzed by the Methyltransferase Set7/9. Journal of Biological Chemistry, 2015, 290, 9812-9822.	3.4	37
29	Revealing transcription factors during human pancreatic Î ² cell development. Trends in Endocrinology and Metabolism, 2014, 25, 407-414.	7.1	62
30	Islet-1 Is Essential for Pancreatic \hat{I}^2 -Cell Function. Diabetes, 2014, 63, 4206-4217.	0.6	67
31	Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase. Cellular Signalling, 2014, 26, 1792-1799.	3.6	15
32	The MafA Transcription Factor Becomes Essential to Islet β-Cells Soon After Birth. Diabetes, 2014, 63, 1994-2005.	0.6	106
33	Pdx1 Maintains β Cell Identity and Function by Repressing an α Cell Program. Cell Metabolism, 2014, 19, 259-271.	16.2	325
34	Islet α-, β-, and δ-Cell Development Is Controlled by the Ldb1 Coregulator, Acting Primarily With the Islet-1 Transcription Factor. Diabetes, 2013, 62, 875-886.	0.6	37
35	Characterization of an Apparently Novel β-Cell Line-enriched 80–88 kDa Transcriptional Activator of the MafA and Pdx1 Genes. Journal of Biological Chemistry, 2013, 288, 3795-3803.	3.4	4
36	Inactivation of specific Î ² cell transcription factors in type 2 diabetes. Journal of Clinical Investigation, 2013, 123, 3305-3316.	8.2	414

ROLAND STEIN

#	Article	IF	CITATIONS
37	MafA and MafB activity in pancreatic β cells. Trends in Endocrinology and Metabolism, 2011, 22, 364-373.	7.1	187
38	Disruption of a Novel Krüppel-like Transcription Factor p300-regulated Pathway for Insulin Biosynthesis Revealed by Studies of the c331 INS Mutation Found in Neonatal Diabetes Mellitus. Journal of Biological Chemistry, 2011, 286, 28414-28424.	3.4	72
39	Islet β-Cell-Specific <i>MafA</i> Transcription Requires the 5′-Flanking Conserved Region 3 Control Domain. Molecular and Cellular Biology, 2010, 30, 4234-4244.	2.3	42
40	Phosphorylation within the MafA N Terminus Regulates C-terminal Dimerization and DNA Binding. Journal of Biological Chemistry, 2010, 285, 12655-12661.	3.4	25
41	MafA and MafB Regulate Genes Critical to β-Cells in a Unique Temporal Manner. Diabetes, 2010, 59, 2530-2539.	0.6	217
42	The Stability and Transactivation Potential of the Mammalian MafA Transcription Factor Are Regulated by Serine 65 Phosphorylation. Journal of Biological Chemistry, 2009, 284, 759-765.	3.4	37
43	Islet-1 is Required for the Maturation, Proliferation, and Survival of the Endocrine Pancreas. Diabetes, 2009, 58, 2059-2069.	0.6	125
44	Transcriptional analysis of intracytoplasmically stained, FACS-purified cells by high-throughput, quantitative nuclease protection. Nature Biotechnology, 2009, 27, 1038-1042.	17.5	44
45	MODY7 Gene, KLF11, Is a Novel p300-dependent Regulator of Pdx-1 (MODY4) Transcription in Pancreatic Islet β Cells. Journal of Biological Chemistry, 2009, 284, 36482-36490.	3.4	94
46	MafA is a dedicated activator of the insulin gene in vivo. Journal of Endocrinology, 2008, 198, 271-279.	2.6	41
47	MafB is required for islet β cell maturation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3853-3858.	7.1	223
48	MafA Regulates Expression of Genes Important to Islet β-Cell Function. Molecular Endocrinology, 2007, 21, 2764-2774.	3.7	89
49	MafB. Diabetes, 2006, 55, 297-304.	0.6	178
50	FoxA2, Nkx2.2, and PDX-1 Regulate Islet β-Cell-Specific mafA Expression through Conserved Sequences Located between Base Pairs â´'8118 and â`'7750 Upstream from the Transcription Start Site. Molecular and Cellular Biology, 2006, 26, 5735-5743.	2.3	112
51	The Islet β Cell-enriched MafA Activator Is a Key Regulator of Insulin Gene Transcription. Journal of Biological Chemistry, 2005, 280, 11887-11894.	3.4	165
52	Interactions between Areas I and II Direct pdx-1 Expression Specifically to Islet Cell Types of the Mature and Developing Pancreas. Journal of Biological Chemistry, 2005, 280, 38438-38444.	3.4	22
53	Oxidative Stress-mediated, Post-translational Loss of MafA Protein as a Contributing Mechanism to Loss of Insulin Gene Expression in Glucotoxic Beta Cells. Journal of Biological Chemistry, 2005, 280, 11107-11113.	3.4	192
54	The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2930-2933.	7.1	258

ROLAND STEIN

#	ARTICLE	IF	CITATIONS
55	Conserved Transcriptional Regulatory Domains of the pdx-1 Gene. Molecular Endocrinology, 2004, 18, 533-548.	3.7	67
56	The Islet ॆ Cell-enriched RIPE3b1/Maf Transcription Factor Regulates pdx-1 Expression. Journal of Biological Chemistry, 2003, 278, 12263-12270.	3.4	53
57	Members of the Large Maf Transcription Family Regulate Insulin Gene Transcription in Islet β Cells. Molecular and Cellular Biology, 2003, 23, 6049-6062.	2.3	279
58	Transcription Factor Occupancy of the Insulin Gene in Vivo. Journal of Biological Chemistry, 2003, 278, 751-756.	3.4	80
59	Insulin Gene Transcription Is Mediated by Interactions between the p300 Coactivator and PDX-1, BETA2, and E47. Molecular and Cellular Biology, 2002, 22, 412-420.	2.3	167
60	Conserved Sequences in a Tissue-Specific Regulatory Region of the pdx-1 Gene Mediate Transcription in Pancreatic β Cells: Role for Hepatocyte Nuclear Factor 3I² and Pax6. Molecular and Cellular Biology, 2002, 22, 4702-4713.	2.3	74
61	The Role of Hepatic Nuclear Factor 1α and PDX-1 in Transcriptional Regulation of the pdx-1 Gene. Journal of Biological Chemistry, 2001, 276, 47775-47784.	3.4	108
62	Pancreatic β Cell-specific Transcription of thepdx-1 Gene. Journal of Biological Chemistry, 2000, 275, 3485-3492.	3.4	141
63	Glucose stimulates the activation domain potential of the PDX-1 homeodomain transcription factor. FEBS Letters, 1998, 431, 362-366.	2.8	68
64	p300 Mediates Transcriptional Stimulation by the Basic Helix-Loop-Helix Activators of the Insulin Gene. Molecular and Cellular Biology, 1998, 18, 2957-2964.	2.3	133
65	Analysis of the Role of E2A-Encoded Proteins in Insulin Gene Transcription. Molecular Endocrinology, 1997, 11, 1608-1617.	3.7	4
66	Analysis of an insulin gene transcription control element. FEBS Letters, 1994, 338, 187-190.	2.8	3